beevee: bvh: add intersection test to BVH

This commit is contained in:
Bruno BELANYI 2020-03-24 20:30:12 +01:00
parent 45fca6f3ed
commit d8a4a2eaad

View file

@ -1,4 +1,5 @@
use crate::aabb::{Bounded, AABB}; use crate::aabb::{Bounded, AABB};
use crate::ray::Ray;
use crate::Axis; use crate::Axis;
/// An enum representing either an internal or a leaf node of the [`BVH`] /// An enum representing either an internal or a leaf node of the [`BVH`]
@ -151,6 +152,109 @@ impl BVH {
}; };
check_node(objects, &self.tree) check_node(objects, &self.tree)
} }
/// Iterate recursively over the [`BVH`] to find an intersection point with the given [`Ray`].
/// This algorithm tries to only iterate over Nodes that are abolutely necessary, and skip
/// visiting nodes that are too far away.
/// You still need to make sure if the object is actually intersected by the [`Ray`]
/// afterwards.
///
/// [`BVH`]: struct.BVH.html
/// [`Ray`]: ../ray/struct.Ray.html
/// # Examples
/// ```
/// # use beevee::{Point, Vector};
/// # use beevee::aabb::{AABB, Bounded};
/// # use beevee::bvh::BVH;
/// use beevee::ray::Ray;
/// #
/// # #[derive(Clone, Debug, PartialEq)]
/// # struct Sphere {
/// # center: Point,
/// # radius: f32,
/// # }
/// #
/// # impl Bounded for Sphere {
/// # fn aabb(&self) -> AABB {
/// # let delt = Vector::new(self.radius, self.radius, self.radius);
/// # AABB::with_bounds(self.center - delt, self.center + delt)
/// # }
/// # fn centroid(&self) -> Point {
/// # self.center
/// # }
/// # }
/// #
/// // Using the same sphere definition than build
/// let spheres: &mut [Sphere] = &mut [Sphere{ center: Point::origin(), radius: 0.5 }];
/// let bvh = BVH::with_max_capacity(spheres, 32);
///
/// // This ray is directly looking at the spheres
/// let ray = Ray::new(Point::new(-1., 0., 0.), Vector::x_axis());
/// let res = bvh.walk(&ray, spheres);
///
/// assert!(res.is_some());
/// let (dist, obj) = res.unwrap();
/// assert_eq!(dist, 0.5);
/// assert_eq!(obj, &spheres[0]);
/// ```
pub fn walk<'o, O: Bounded>(&self, ray: &Ray, objects: &'o [O]) -> Option<&'o O> {
walk_rec_helper(ray, objects, &self.tree, std::f32::INFINITY).map(|(_, obj)| obj)
}
}
fn walk_rec_helper<'o, O: Bounded>(
ray: &Ray,
objects: &'o [O],
node: &Node,
min: f32,
) -> Option<(f32, &'o O)> {
use std::cmp::Ordering;
match &node.kind {
// Return the smallest intersection distance on leaf nodes
NodeEnum::Leaf => objects[node.begin..node.end]
.iter()
// This turns the Option<f32> of an intersection into an Option<(f32, &O)>
.filter_map(|o| ray.aabb_intersection(&o.aabb()).map(|d| (d, o)))
// Discard values that are too far away
.filter(|(dist, _)| dist < &min)
// Only keep the minimum value, if there is one
.min_by(|(lhs, _), (rhs, _)| lhs.partial_cmp(rhs).unwrap_or(Ordering::Equal)),
// Recursively find the best node otherwise
NodeEnum::Internal { left, right } => {
let left_dist = left.bounds.distance_to_point(ray.origin);
let right_dist = right.bounds.distance_to_point(ray.origin);
// Pick the short and far nodes
let (near, far, short_dist, far_dist) = if left_dist < right_dist {
(left, right, left_dist, right_dist)
} else {
(right, left, right_dist, left_dist)
};
// Don't recurse if we know we cannot possibly find a short-enough intersection
if short_dist > min {
return None;
}
// Recurse to the nearest Node first
let nearest_res = walk_rec_helper(ray, objects, near.as_ref(), min);
// Return immediately if there is no point going to the right at all
if far_dist > min {
return nearest_res;
}
match nearest_res {
// Short-circuit if we know it is shorter than any point in the far node
Some((t, obj)) if t <= far_dist => Some((t, obj)),
// We have short_dist <= far_dist <= min in this scenario
// With the eventual val.0 in the [short_dist, min) window
val => {
// Compute the new minimal distance encountered
let min = val.map_or(min, |(t, _)| min.min(t));
// Recursing with this new minimum can only return None or a better intersecion
walk_rec_helper(ray, objects, far.as_ref(), min).or(val)
}
}
}
}
} }
fn bounds_from_slice<O: Bounded>(objects: &[O]) -> AABB { fn bounds_from_slice<O: Bounded>(objects: &[O]) -> AABB {