library: render: add Scene implementation
This commit is contained in:
parent
c53d50f165
commit
6a829a96fd
|
@ -3,3 +3,6 @@ pub use light_aggregate::*;
|
|||
|
||||
pub mod object;
|
||||
pub use object::*;
|
||||
|
||||
pub mod scene;
|
||||
pub use scene::*;
|
||||
|
|
144
src/render/scene.rs
Normal file
144
src/render/scene.rs
Normal file
|
@ -0,0 +1,144 @@
|
|||
use super::{light_aggregate::LightAggregate, object::Object};
|
||||
use crate::core::Camera;
|
||||
use crate::core::LinearColor;
|
||||
use crate::{Point, Vector};
|
||||
use bvh::ray::Ray;
|
||||
use image::RgbImage;
|
||||
use rand::prelude::thread_rng;
|
||||
use rand::Rng;
|
||||
|
||||
/// Represent the scene being rendered.
|
||||
pub struct Scene<'a> {
|
||||
camera: Camera,
|
||||
lights: LightAggregate,
|
||||
objects: Vec<Object<'a>>,
|
||||
aliasing_limit: u32,
|
||||
}
|
||||
|
||||
impl<'a> Scene<'a> {
|
||||
pub fn new(
|
||||
camera: Camera,
|
||||
lights: LightAggregate,
|
||||
objects: Vec<Object<'a>>,
|
||||
aliasing_limit: u32,
|
||||
reflection_limit: u32,
|
||||
) -> Self {
|
||||
Scene {
|
||||
camera,
|
||||
lights,
|
||||
objects,
|
||||
aliasing_limit,
|
||||
reflection_limit,
|
||||
}
|
||||
}
|
||||
|
||||
/// Render the scene into an image.
|
||||
pub fn render(&self) -> RgbImage {
|
||||
let mut image = RgbImage::new(self.camera.film().width(), self.camera.film().height());
|
||||
let pixel_func = if self.aliasing_limit > 0 {
|
||||
Self::anti_alias_pixel
|
||||
} else {
|
||||
Self::pixel
|
||||
};
|
||||
for (x, y, pixel) in image.enumerate_pixels_mut() {
|
||||
*pixel = pixel_func(&self, x as f32, y as f32).into()
|
||||
}
|
||||
image
|
||||
}
|
||||
|
||||
/// Get pixel color for (x, y) a pixel **coordinate**
|
||||
fn pixel(&self, x: f32, y: f32) -> LinearColor {
|
||||
let (x, y) = self.camera.film().pixel_ratio(x, y);
|
||||
let pixel = self.camera.film().pixel_at_ratio(x, y);
|
||||
let direction = (pixel - self.camera.origin()).normalize();
|
||||
self.cast_ray(Ray::new(pixel, direction))
|
||||
.map_or_else(LinearColor::black, |(t, obj)| {
|
||||
self.color_at(pixel + direction * t, obj, direction, self.reflection_limit)
|
||||
})
|
||||
}
|
||||
|
||||
/// Get pixel color with anti-aliasing
|
||||
fn anti_alias_pixel(&self, x: f32, y: f32) -> LinearColor {
|
||||
let range = 0..self.aliasing_limit;
|
||||
let mut rng = thread_rng();
|
||||
let acc: LinearColor = range
|
||||
.map(|_| {
|
||||
let random_x: f32 = rng.gen();
|
||||
let random_y: f32 = rng.gen();
|
||||
self.pixel(x + random_x, y + random_y)
|
||||
})
|
||||
.sum();
|
||||
acc / self.aliasing_limit as f32
|
||||
}
|
||||
|
||||
fn cast_ray(&self, ray: Ray) -> Option<(f32, &Object)> {
|
||||
// NOTE(Bruno): should be written using iterators
|
||||
let mut shot_obj: Option<&Object> = None;
|
||||
let mut t = std::f32::INFINITY;
|
||||
for object in self.objects.iter() {
|
||||
match object.shape.intersect(&ray) {
|
||||
Some(dist) if dist < t => {
|
||||
t = dist;
|
||||
shot_obj = Some(&object);
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
}
|
||||
shot_obj.map(|obj| (t, obj))
|
||||
}
|
||||
|
||||
fn color_at(&self, point: Point, object: &Object, incident_ray: Vector) -> LinearColor {
|
||||
self.illuminate(point, object, incident_ray)
|
||||
// FIXME: add reflection
|
||||
}
|
||||
|
||||
fn illuminate(&self, point: Point, object: &Object, incident_ray: Vector) -> LinearColor {
|
||||
let texel = object.shape.project_texel(&point);
|
||||
let normal = object.shape.normal(&point);
|
||||
let reflected = reflected(incident_ray, normal);
|
||||
|
||||
self.illuminate_ambient(object.texture.texel_color(texel))
|
||||
+ self.illuminate_spatial(point.clone(), object, normal, reflected)
|
||||
}
|
||||
|
||||
fn illuminate_ambient(&self, color: LinearColor) -> LinearColor {
|
||||
self.lights
|
||||
.ambient_lights_iter()
|
||||
.map(|light| color.clone() * light.illumination(&Point::origin()))
|
||||
.sum()
|
||||
}
|
||||
|
||||
fn illuminate_spatial(
|
||||
&self,
|
||||
point: Point,
|
||||
object: &Object,
|
||||
normal: Vector,
|
||||
reflected: Vector,
|
||||
) -> LinearColor {
|
||||
let texel = object.shape.project_texel(&point);
|
||||
let k_d = object.material.diffuse(texel);
|
||||
let k_s = object.material.specular(texel);
|
||||
self.lights
|
||||
.spatial_lights_iter()
|
||||
.map(|light| {
|
||||
let (direction, t) = light.to_source(&point);
|
||||
let light_ray = Ray::new(point + 0.001 * direction, direction);
|
||||
match self.cast_ray(light_ray) {
|
||||
// Take shadows into account
|
||||
Some((obstacle_t, _)) if obstacle_t < t => return LinearColor::black(),
|
||||
_ => {}
|
||||
}
|
||||
let lum = light.illumination(&point);
|
||||
let diffused = k_d.clone() * normal.dot(&direction);
|
||||
let specular = k_s.clone() * reflected.dot(&direction);
|
||||
lum * (diffused + specular)
|
||||
})
|
||||
.sum()
|
||||
}
|
||||
}
|
||||
|
||||
fn reflected(incident: Vector, normal: Vector) -> Vector {
|
||||
let proj = incident.dot(&normal);
|
||||
let delt = normal * (proj * 2.);
|
||||
incident - delt
|
||||
}
|
Loading…
Reference in a new issue