project: move to Cargo workspace

This commit is contained in:
Bruno BELANYI 2020-03-23 23:46:56 +01:00
parent b5835b2726
commit 01d2c2d973
32 changed files with 42 additions and 37 deletions

38
pathtracer/Cargo.toml Normal file
View file

@ -0,0 +1,38 @@
[package]
name = "pathtracer"
version = "0.1.0"
authors = [
"Bruno BELANYI <brunobelanyi@gmail.com>",
"Antoine Martin <antoine97.martin@gmail.com>"
]
edition = "2018"
description = "A pathtracer written in Rust"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[lib]
name = "pathtracer"
path = "src/lib.rs"
[[bin]]
name = "pathtracer"
path = "src/main.rs"
[dependencies]
bvh = "0.3.2"
derive_more = "0.99.3"
enum_dispatch = "0.2.1"
image = "0.23.0"
indicatif = "0.14.0"
rand = "0.7"
rayon = "1.3.0"
serde_yaml = "0.8"
structopt = "0.3"
[dependencies.nalgebra]
version = "0.20.0"
features = ["serde-serialize"]
[dependencies.serde]
version = "1.0"
features = ["derive"]

View file

@ -0,0 +1,83 @@
# Optional field
aliasing_limit: 10
# Optional field
reflection_limit: 5
camera:
origin: [0.0, 0.0, 0.0]
forward: [ 1.0, 0.0, 0.0]
up: [0.0, 1.0, 0.0]
fov: 90.0
distance_to_image: 1.0
x: 1920
y: 1080
# Optional field, each key itself being optional
lights:
ambients:
- color: {r: 0.05, g: 0.05, b: 0.05}
directionals:
- direction: [0.5, 0.5, 0.5]
color: {r: 0.0, g: 0.5, b: 0.0}
- direction: [0.5, 0.5, -0.5]
color: {r: 0.0, g: 0.0, b: 0.5}
- direction: [0.7, -0.5, 0.0]
color: {r: 0.5, g: 0.0, b: 0.0}
points:
- position: [0.0, 0.0, 0.0]
color: {r: 0.2, g: 0.2, b: 0.2}
spots:
- position: [0.0, 0.0, 0.0]
direction: [1.0, 0.0, 0.0]
fov: 5.0
color: {r: 1.0, g: 1.0, b: 0.0}
objects:
- shape:
type: sphere
center: [4.5, 0.0, 0.0]
radius: 0.4
material:
type: uniform
diffuse:
r: 0.0
g: 0.0
b: 0.0
specular:
r: 1.0
g: 1.0
b: 1.0
# Optional fields (go together)
#transparency: 0.5
#index: 1.5
texture:
type: uniform
color:
r: 1.0
g: 1.0
b: 1.0
- shape:
type: sphere
# Optional field
# inverted: false
center: [10.0, 0.0, 0.0]
radius: 5.0
material:
type: uniform
diffuse:
r: 1.0
g: 1.0
b: 1.0
specular:
r: 1.0
g: 1.0
b: 1.0
# Optional field
#reflectivity: 0.0
texture:
type: uniform
color:
r: 1.0
g: 1.0
b: 1.0

View file

@ -0,0 +1,40 @@
aliasing_limit: 10
reflection_limit: 5
camera:
origin: [-1.0, 0.0, 0.0]
forward: [ 1.0, 0.0, 0.0]
up: [0.0, 1.0, 0.0]
fov: 90.0
distance_to_image: 1.0
x: 1080
y: 1080
lights:
ambients:
- color: {r: 1.0, g: 0.5, b: 0.2}
directionals:
- direction: [1.0, 0.0, 0.0]
color: {r: 1.0, g: 0.5, b: 0.2}
points:
- position: [1.0, 1.0, 1.0]
color: {r: 1.0, g: 0.5, b: 0.2}
spots:
- position: [0.0, 0.0, 0.0]
direction: [1.0, 0.0, 0.0]
fov: 90.0
color: {r: 1.0, g: 0.5, b: 0.2}
objects:
- shape:
type: sphere
inverted: false
center: [5., 0.0, 0.0]
radius: 1.0
material:
type: uniform
diffuse: {r: 0.5, g: 0.5, b: 0.5}
specular: {r: 1., g: 1., b: 1.}
texture:
type: uniform
color: {r: 0.25, g: 0.5, b: 1.}

View file

@ -0,0 +1,91 @@
# Optional field
reflection_limit: 5
camera:
origin: [0.0, 0.0, 0.0]
forward: [ 1.0, 0.0, 0.0]
up: [0.0, 1.0, 0.0]
fov: 90.0
distance_to_image: 1.0
x: 1080
y: 1080
lights:
directionals:
- direction: [0.5, 0.5, 0.5]
color: {r: 0.0, g: 0.5, b: 0.0}
- direction: [0.5, 0.5, -0.5]
color: {r: 0.0, g: 0.0, b: 0.5}
- direction: [0.7, -0.5, 0.0]
color: {r: 0.5, g: 0.0, b: 0.0}
objects:
- shape:
type: sphere
center: [5.0, -0.2, 0.2]
radius: 1.0
material:
type: uniform
diffuse:
r: 1.0
g: 1.0
b: 1.0
specular:
r: 1.0
g: 1.0
b: 1.0
transparency: 1.0
index: 1.5
texture:
type: uniform
color:
r: 1.0
g: 1.0
b: 1.0
- shape:
type: triangle
corners:
- [10., -10., -10.]
- [10., 10., 10.]
- [10., 10., -10.]
material:
type: uniform
diffuse:
r: 1.0
g: 1.0
b: 1.0
specular:
r: 1.0
g: 1.0
b: 1.0
texture:
type: uniform
color:
r: 1.0
g: 1.0
b: 0.0
- shape:
type: triangle
corners:
- [10., -10., -10.]
- [10., -10., 10.]
- [10., 10., 10.]
material:
type: uniform
diffuse:
r: 1.0
g: 1.0
b: 1.0
specular:
r: 1.0
g: 1.0
b: 1.0
texture:
type: uniform
color:
r: 0.5
g: 1.0
b: 0.5

View file

@ -0,0 +1,211 @@
//! Camera related logic
use super::film::Film;
use crate::{Point, Vector};
use serde::{Deserialize, Deserializer};
/// Represent an abstract camera to observe the scene.
#[derive(Debug, PartialEq)]
pub struct Camera {
/// Where the camera is set in the scene (i.e: its focal point).
origin: Point,
/// The film to represent each pixel in the scene.
film: Film,
}
impl Camera {
/// Creates a new `Camera`.
///
/// # Examples
///
/// ```
/// # use pathtracer::core::Camera;
/// use pathtracer::{Point, Vector};
///
/// let cam = Camera::new(
/// Point::new(-1., 0., 0.),
/// Vector::new(1., 0., 0.),
/// Vector::new(0., 1., 0.),
/// 2. * f32::atan(1.), /* 90° in radian */
/// 1.,
/// 1080,
/// 1080,
/// );
/// ```
pub fn new(
origin: Point,
forward: Vector,
up: Vector,
fov: f32,
dist_to_image: f32,
x: u32,
y: u32,
) -> Self {
let right = forward.cross(&up);
let center = origin + forward.normalize() * dist_to_image;
let screen_size = 2. * f32::tan(fov / 2.) * dist_to_image;
let film = Film::new(x, y, screen_size, center, up, right);
Camera { origin, film }
}
/// Get the `Camera`'s [`Film`].
///
/// [`Film`]: ../film/struct.Film.html
///
/// # Examples
///
/// ```
/// # use pathtracer::core::{Camera, Film};
/// #
/// let cam = Camera::default();
/// let film: &Film = cam.film();
/// ```
pub fn film(&self) -> &Film {
&self.film
}
/// Get the `Camera`'s `Point` of origin.
///
/// # Examples
///
/// ```
/// # use pathtracer::core::Camera;
/// # use pathtracer::Point;
/// #
/// let cam = Camera::default();
/// let origin: &Point = cam.origin();
/// ```
pub fn origin(&self) -> &Point {
&self.origin
}
}
impl Default for Camera {
/// Returns a `Camera` with a 1080x1080 `Film`
///
/// # Examples
///
/// ```
/// # use pathtracer::core::Camera;
/// use pathtracer::{Point, Vector};
///
/// let default = Camera::default();
/// let new = Camera::new(
/// Point::new(0., 0., 0.),
/// Vector::new(1., 0., 0.),
/// Vector::new(0., 1., 0.),
/// 2. * f32::atan(1.), /* 90° in radian */
/// 1.,
/// 1080,
/// 1080,
/// );
///
/// assert_eq!(default, new);
/// ```
fn default() -> Self {
Self::new(
Point::origin(),
Vector::new(1., 0., 0.),
Vector::new(0., 1., 0.),
2. * f32::atan(1.), /* 90° in radian */
1.,
1080,
1080,
)
}
}
#[derive(Debug, Deserialize)]
struct SerializedCamera {
origin: Point,
forward: Vector,
up: Vector,
fov: f32,
distance_to_image: f32,
x: u32,
y: u32,
}
impl From<SerializedCamera> for Camera {
fn from(cam: SerializedCamera) -> Self {
Camera::new(
cam.origin,
cam.forward,
cam.up,
std::f32::consts::PI * cam.fov / 180.,
cam.distance_to_image,
cam.x,
cam.y,
)
}
}
impl<'de> Deserialize<'de> for Camera {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
let cam: SerializedCamera = Deserialize::deserialize(deserializer)?;
Ok(cam.into())
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn new_works() {
let cam = Camera::new(
Point::new(-1., 0., 0.),
Vector::new(1., 0., 0.),
Vector::new(0., 1., 0.),
2. * f32::atan(1.), /* 90° in radian */
1.,
1080,
1080,
);
assert_eq!(
cam,
Camera {
origin: Point::new(-1., 0., 0.),
film: Film::new(
1080,
1080,
2.,
Point::origin(),
Vector::new(0., 1., 0.),
Vector::new(0., 0., 1.),
)
}
)
}
#[test]
fn deserialization_works() {
let yaml = r#"
origin: [-1.0, 0.0, 0.0]
forward: [ 1.0, 0.0, 0.0]
up: [0.0, 1.0, 0.0]
fov: 90.0
distance_to_image: 1.0
x: 1080
y: 1080
"#;
let cam: Camera = serde_yaml::from_str(yaml).unwrap();
assert_eq!(
cam,
Camera {
origin: Point::new(-1., 0., 0.),
film: Film::new(
1080,
1080,
2.,
Point::origin(),
Vector::new(0., 1., 0.),
Vector::new(0., 0., 1.),
)
}
)
}
}

View file

@ -0,0 +1,350 @@
//! Color definition and operations
use derive_more::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign, Sum};
use serde::Deserialize;
use std::ops::{Div, DivAssign, Mul, MulAssign};
#[derive(
Debug,
Clone,
PartialEq,
Add,
AddAssign,
Div,
DivAssign,
Mul,
MulAssign,
Sub,
SubAssign,
Sum,
Deserialize,
)]
/// A structure to represent operations in the linear RGB colorspace.
pub struct LinearColor {
/// The color's red component
pub r: f32,
/// The color's green component
pub g: f32,
/// The color's blue component
pub b: f32,
}
impl LinearColor {
/// Creates the color black.
///
/// All 3 components are set to 0.
///
/// # Examples
///
/// ```
/// # use pathtracer::core::LinearColor;
/// #
/// let black = LinearColor::black();
/// assert_eq!(
/// black,
/// LinearColor {
/// r: 0.,
/// g: 0.,
/// b: 0.
/// }
/// );
/// ```
pub fn black() -> Self {
LinearColor {
r: 0.,
g: 0.,
b: 0.,
}
}
/// Creates a new `Color`.
///
/// # Examples
///
/// ```
/// # use pathtracer::core::LinearColor;
/// #
/// let color = LinearColor::new(1.0, 0.0, 0.0); // bright red!
/// ```
pub fn new(r: f32, g: f32, b: f32) -> Self {
LinearColor { r, g, b }
}
#[must_use]
/// Clamps the color's RGB components between 0.0 and 1.0.
///
/// # Examples
///
/// ```
/// # use pathtracer::core::LinearColor;
/// #
/// let color = LinearColor::new(1.5, -1.0, 0.5);
/// assert_eq!(color.clamp(), LinearColor::new(1.0, 0.0, 0.5))
/// ```
pub fn clamp(self) -> Self {
fn clamp(v: f32) -> f32 {
if v > 1. {
1.
} else if v < 0. {
0.
} else {
v
}
};
LinearColor::new(clamp(self.r), clamp(self.g), clamp(self.b))
}
}
impl Default for LinearColor {
fn default() -> Self {
Self::black()
}
}
impl Mul for LinearColor {
type Output = LinearColor;
fn mul(self, other: Self) -> Self::Output {
LinearColor {
r: self.r * other.r,
g: self.g * other.g,
b: self.b * other.b,
}
}
}
impl MulAssign for LinearColor {
fn mul_assign(&mut self, other: Self) {
*self = self.clone() * other
}
}
impl Div for LinearColor {
type Output = LinearColor;
fn div(self, other: Self) -> Self::Output {
LinearColor {
r: self.r / other.r,
g: self.g / other.g,
b: self.b / other.b,
}
}
}
impl DivAssign for LinearColor {
fn div_assign(&mut self, other: Self) {
*self = self.clone() / other
}
}
impl From<LinearColor> for image::Rgb<u8> {
fn from(mut color: LinearColor) -> Self {
color = color.clamp();
image::Rgb([
(color.r * 255.) as u8,
(color.g * 255.) as u8,
(color.b * 255.) as u8,
])
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn default_is_black() {
assert_eq!(<LinearColor as Default>::default(), LinearColor::black())
}
#[test]
fn red_is_red() {
let red = LinearColor::new(1., 0., 0.);
assert_eq!(
red,
LinearColor {
r: 1.,
g: 0.,
b: 0.
}
)
}
#[test]
fn green_is_green() {
let green = LinearColor::new(0., 1., 0.);
assert_eq!(
green,
LinearColor {
r: 0.,
g: 1.,
b: 0.
}
)
}
#[test]
fn blue_is_blue() {
let blue = LinearColor::new(0., 0., 1.);
assert_eq!(
blue,
LinearColor {
r: 0.,
g: 0.,
b: 1.
}
)
}
#[test]
fn mul_by_float_works() {
let color = LinearColor::new(0.125, 0.25, 0.0625);
assert_eq!(
color * 4.,
LinearColor {
r: 0.5,
g: 1.,
b: 0.25,
}
)
}
#[test]
fn div_by_float_works() {
let color = LinearColor::new(0.2, 0.4, 0.6);
assert_eq!(
color / 2.,
LinearColor {
r: 0.1,
g: 0.2,
b: 0.3,
}
)
}
#[test]
fn mulassign_by_float_works() {
let mut color = LinearColor::new(0.125, 0.25, 0.0625);
color *= 4.;
assert_eq!(
color,
LinearColor {
r: 0.5,
g: 1.,
b: 0.25,
}
)
}
#[test]
fn divassign_by_float_works() {
let mut color = LinearColor::new(0.2, 0.4, 0.6);
color /= 2.;
assert_eq!(
color,
LinearColor {
r: 0.1,
g: 0.2,
b: 0.3,
}
)
}
#[test]
fn mul_by_color_works() {
let lhs = LinearColor::new(0.125, 0.25, 0.0625);
let rhs = LinearColor::new(1.0, 0.5, 2.0);
assert_eq!(lhs * rhs, LinearColor::new(0.125, 0.125, 0.125))
}
#[test]
fn div_by_color_works() {
let lhs = LinearColor::new(1.0, 0.5, 0.25);
let rhs = LinearColor::new(4.0, 2.0, 1.0);
assert_eq!(lhs / rhs, LinearColor::new(0.25, 0.25, 0.25))
}
#[test]
fn mulassign_by_color_works() {
let mut lhs = LinearColor::new(0.125, 0.25, 0.0625);
lhs *= LinearColor::new(1.0, 0.5, 2.0);
assert_eq!(lhs, LinearColor::new(0.125, 0.125, 0.125))
}
#[test]
fn divassign_by_color_works() {
let mut lhs = LinearColor::new(1.0, 0.5, 0.25);
lhs /= LinearColor::new(4.0, 2.0, 1.0);
assert_eq!(lhs, LinearColor::new(0.25, 0.25, 0.25))
}
#[test]
fn add_works() {
let lhs = LinearColor::new(1., 0., 0.125);
let rhs = LinearColor::new(0., 0.5, 0.25);
assert_eq!(
lhs + rhs,
LinearColor {
r: 1.,
g: 0.5,
b: 0.375,
}
);
}
#[test]
fn sub_works() {
let lhs = LinearColor::new(1., 0.5, 0.25);
let rhs = LinearColor::new(0.5, 0.125, 0.25);
assert_eq!(
lhs - rhs,
LinearColor {
r: 0.5,
g: 0.375,
b: 0.,
}
);
}
#[test]
fn addassign_works() {
let mut lhs = LinearColor::new(1., 0., 0.125);
lhs += LinearColor::new(0., 0.5, 0.25);
assert_eq!(
lhs,
LinearColor {
r: 1.,
g: 0.5,
b: 0.375,
}
);
}
#[test]
fn subassign_works() {
let mut lhs = LinearColor::new(1., 0.5, 0.25);
lhs -= LinearColor::new(0.5, 0.125, 0.25);
assert_eq!(
lhs,
LinearColor {
r: 0.5,
g: 0.375,
b: 0.,
}
);
}
#[test]
fn deserialization_works() {
let yaml = "{r: 1.0, g: 0.5, b: 0.2}";
let ans: LinearColor = serde_yaml::from_str(yaml).unwrap();
assert_eq!(
ans,
LinearColor {
r: 1.0,
g: 0.5,
b: 0.2
}
)
}
}

253
pathtracer/src/core/film.rs Normal file
View file

@ -0,0 +1,253 @@
//! Camera film logic
use crate::{Point, Vector};
/// Represent an abstract camera film, to know where each pixel is in space.
#[derive(Debug, PartialEq)]
pub struct Film {
x: u32,
y: u32,
center: Point,
ratio_up: Vector,
ratio_right: Vector,
}
impl Film {
/// Creates a new `Film`.
///
/// # Examples
///
/// ```
/// # use pathtracer::core::Film;
/// # use pathtracer::{Point, Vector};
/// #
/// let film = Film::new(
/// 1080,
/// 1080,
/// 10.0,
/// Point::origin(),
/// Vector::new(0.0, 1.0, 0.0),
/// Vector::new(1.0, 0.0, 0.0)
/// );
/// ```
pub fn new(x: u32, y: u32, screen_size: f32, center: Point, up: Vector, right: Vector) -> Self {
let (x_size, y_size) = if x > y {
(screen_size, screen_size * y as f32 / x as f32)
} else {
(screen_size * x as f32 / y as f32, screen_size)
};
Film {
x,
y,
center,
ratio_up: up.normalize() * y_size,
ratio_right: right.normalize() * x_size,
}
}
/// Get the `Film`'s width.
///
/// # Examples
///
/// ```
/// # use pathtracer::core::Film;
/// #
/// let film = Film::default();
/// let width: u32 = film.width();
/// ```
pub fn width(&self) -> u32 {
self.x
}
/// Get the `Film`'s height.
///
/// # Examples
///
/// ```
/// # use pathtracer::core::Film;
/// #
/// let film = Film::default();
/// let height: u32 = film.height();
/// ```
pub fn height(&self) -> u32 {
self.y
}
/// Get a ratio of the pixel's position on the screen.
///
/// # Examples
///
/// ```
/// # use pathtracer::core::Film;
/// #
/// let film = Film::default(); // 1080x1080 film, width of 1.0
/// let (x, y) = film.pixel_ratio(108.0, 972.0);
/// assert_eq!(x, 0.1);
/// assert_eq!(y, 0.9);
/// ```
pub fn pixel_ratio(&self, x: f32, y: f32) -> (f32, f32) {
(x / self.x as f32, y / self.y as f32)
}
/// Get a pixel's absolute position from a relative screen ratio.
///
/// # Examples
///
/// ```
/// # use pathtracer::core::Film;
/// use pathtracer::Point;
///
/// let film = Film::default(); // 1080x1080 film, width of 1.0
/// let (x, y) = film.pixel_ratio(108.0, 1080.0);
/// let pos: Point = film.pixel_at_ratio(x, y);
/// assert_eq!(pos, Point::new(-0.4, -0.5, 0.0));
/// ```
pub fn pixel_at_ratio(&self, x: f32, y: f32) -> Point {
let delt_x = x - 0.5;
let delt_y = 0.5 - y;
self.center + self.ratio_right * delt_x + self.ratio_up * delt_y
}
/// Get a pixel's absolute position from screen coordinates.
///
/// # Examples
///
/// ```
/// # use pathtracer::core::Film;
/// use pathtracer::Point;
///
/// let film = Film::default(); // 1080x1080 film, width of 1.0
/// let pos: Point = film.pixel_at_coord(108, 1080);
/// assert_eq!(pos, Point::new(-0.4, -0.5, 0.0));
/// ```
pub fn pixel_at_coord(&self, x: u32, y: u32) -> Point {
let (x, y) = self.pixel_ratio(x as f32, y as f32);
self.pixel_at_ratio(x, y)
}
}
impl Default for Film {
/// Creates a simple 1080x1080 `Film`.
///
/// The screen size is 1.0, and the screen is centered at the origin.
fn default() -> Self {
Film::new(
1080,
1080,
1.0,
Point::origin(),
Vector::new(0.0, 1.0, 0.0),
Vector::new(1.0, 0.0, 0.0),
)
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn simple_new_works() {
let film = Film::new(
1080,
1080,
1.,
Point::origin(),
Vector::new(0., 1., 0.),
Vector::new(0., 0., 1.),
);
assert_eq!(
film,
Film {
x: 1080,
y: 1080,
center: Point::origin(),
ratio_up: Vector::new(0., 1., 0.),
ratio_right: Vector::new(0., 0., 1.),
}
)
}
#[test]
fn new_with_smaller_x_works() {
let film = Film::new(
1080,
1440,
1.,
Point::origin(),
Vector::new(0., 1., 0.),
Vector::new(0., 0., 1.),
);
assert_eq!(
film,
Film {
x: 1080,
y: 1440,
center: Point::origin(),
ratio_up: Vector::new(0., 1., 0.),
ratio_right: Vector::new(0., 0., 0.75),
}
)
}
#[test]
fn new_with_smaller_y_works() {
let film = Film::new(
1080,
540,
1.,
Point::origin(),
Vector::new(0., 1., 0.),
Vector::new(0., 0., 1.),
);
assert_eq!(
film,
Film {
x: 1080,
y: 540,
center: Point::origin(),
ratio_up: Vector::new(0., 0.5, 0.),
ratio_right: Vector::new(0., 0., 1.),
}
)
}
fn simple_film() -> Film {
Film::new(
1080,
1080,
1.,
Point::origin(),
Vector::new(0., 1., 0.),
Vector::new(0., 0., 1.),
)
}
#[test]
fn pixel_ratio_works() {
let film = simple_film();
assert_eq!(film.pixel_ratio(0., 0.), (0., 0.));
assert_eq!(film.pixel_ratio(1080., 1080.), (1., 1.));
assert_eq!(film.pixel_ratio(1080., 540.), (1., 0.5));
assert_eq!(film.pixel_ratio(540., 1080.), (0.5, 1.));
assert_eq!(film.pixel_ratio(1080., 810.), (1., 0.75));
assert_eq!(film.pixel_ratio(810., 1080.), (0.75, 1.))
}
#[test]
fn pixel_at_ratio_works() {
let film = simple_film();
assert_eq!(film.pixel_at_ratio(0., 0.), Point::new(0., 0.5, -0.5));
assert_eq!(film.pixel_at_ratio(1., 1.), Point::new(0., -0.5, 0.5));
assert_eq!(film.pixel_at_ratio(1., 0.5), Point::new(0., 0., 0.5));
assert_eq!(film.pixel_at_ratio(0.5, 1.), Point::new(0., -0.5, 0.));
}
#[test]
fn pixel_at_coord_works() {
let film = simple_film();
assert_eq!(film.pixel_at_coord(0, 0), Point::new(0., 0.5, -0.5));
assert_eq!(film.pixel_at_coord(1080, 1080), Point::new(0., -0.5, 0.5));
assert_eq!(film.pixel_at_coord(1080, 540), Point::new(0., 0., 0.5));
assert_eq!(film.pixel_at_coord(540, 1080), Point::new(0., -0.5, 0.));
}
}

View file

@ -0,0 +1,143 @@
//! Light property coefficients (diffuse, specular, transparency, reflectivity...)
use super::color::LinearColor;
use serde::Deserialize;
#[derive(Debug, PartialEq, Clone, Deserialize)]
#[serde(untagged)]
/// This enum stores the reflectivity or transparency information.
pub enum ReflTransEnum {
/// Transparence properties.
Transparency {
/// The transparency coefficient.
#[serde(rename = "transparency")]
coef: f32,
/// The diffraction index.
index: f32,
},
/// Reflectivity properties.
Reflectivity {
/// The reflectivity coefficient.
#[serde(rename = "reflectivity")]
coef: f32,
},
}
/// A structure holding all the physical proprerties relating to light at a point.
#[derive(Debug, PartialEq, Clone, Deserialize)]
pub struct LightProperties {
/// The diffuse component.
pub diffuse: LinearColor,
/// The specular component.
pub specular: LinearColor,
/// The transparency or reflectivity properties.
#[serde(flatten)]
pub refl_trans: Option<ReflTransEnum>,
}
impl LightProperties {
/// Creates a new `LightProperties` struct.
///
/// # Examples
///
/// ```
/// # use pathtracer::core::light_properties::{LightProperties, ReflTransEnum};
/// # use pathtracer::core::color::LinearColor;
/// #
/// let lp = LightProperties::new(
/// LinearColor::new(0.25, 0.5, 1.),
/// LinearColor::new(0.75, 0.375, 0.125),
/// Some(ReflTransEnum::Reflectivity { coef: 0.5 }),
/// );
/// ```
pub fn new(
diffuse: LinearColor,
specular: LinearColor,
refl_trans: Option<ReflTransEnum>,
) -> Self {
LightProperties {
diffuse,
specular,
refl_trans,
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn new_works() {
let diffuse = LinearColor::new(0.25, 0.5, 1.);
let specular = LinearColor::new(0.75, 0.375, 0.125);
let refl_trans = Some(ReflTransEnum::Reflectivity { coef: 0.5 });
let properties =
LightProperties::new(diffuse.clone(), specular.clone(), refl_trans.clone());
assert_eq!(
properties,
LightProperties {
diffuse,
specular,
refl_trans,
}
)
}
#[test]
fn deserialization_without_refl_trans_works() {
let yaml = r#"
diffuse: {r: 1.0, g: 0.5, b: 0.25}
specular: {r: 0.25, g: 0.125, b: 0.75}
"#;
let properties: LightProperties = serde_yaml::from_str(yaml).unwrap();
assert_eq!(
properties,
LightProperties::new(
LinearColor::new(1., 0.5, 0.25),
LinearColor::new(0.25, 0.125, 0.75),
None
)
)
}
#[test]
fn deserialization_with_reflection_works() {
let yaml = r#"
diffuse: {r: 1.0, g: 0.5, b: 0.25}
specular: {r: 0.25, g: 0.125, b: 0.75}
transparency: 0.5
index: 1.5
"#;
let properties: LightProperties = serde_yaml::from_str(yaml).unwrap();
assert_eq!(
properties,
LightProperties::new(
LinearColor::new(1., 0.5, 0.25),
LinearColor::new(0.25, 0.125, 0.75),
Some(ReflTransEnum::Transparency {
coef: 0.5,
index: 1.5
})
)
)
}
#[test]
fn deserialization_with_transparency_works() {
let yaml = r#"
diffuse: {r: 1.0, g: 0.5, b: 0.25}
specular: {r: 0.25, g: 0.125, b: 0.75}
reflectivity: 0.25
"#;
let properties: LightProperties = serde_yaml::from_str(yaml).unwrap();
assert_eq!(
properties,
LightProperties::new(
LinearColor::new(1., 0.5, 0.25),
LinearColor::new(0.25, 0.125, 0.75),
Some(ReflTransEnum::Reflectivity { coef: 0.25 })
)
)
}
}

View file

@ -0,0 +1,13 @@
//! Core pathtracing pipeline elements
pub mod camera;
pub use camera::*;
pub mod color;
pub use color::*;
pub mod film;
pub use film::*;
pub mod light_properties;
pub use light_properties::*;

20
pathtracer/src/lib.rs Normal file
View file

@ -0,0 +1,20 @@
#![warn(missing_docs)]
//! A pathtracing crate
use bvh::nalgebra::{Point2, Point3, Vector3};
/// A 2D point coordinate
pub type Point2D = Point2<f32>;
/// A 3D point coordinate
pub type Point = Point3<f32>;
/// A 3D vector
pub type Vector = Vector3<f32>;
pub mod core;
pub mod light;
pub mod material;
pub mod render;
pub mod serialize;
pub mod shape;
pub mod texture;

View file

@ -0,0 +1,59 @@
use super::Light;
use crate::core::LinearColor;
use crate::Point;
use serde::Deserialize;
/// Represent an ambient lighting which is equal in all points of the scene.
#[derive(Debug, PartialEq, Deserialize)]
pub struct AmbientLight {
color: LinearColor,
}
impl AmbientLight {
/// Creates a new `AmbientLight`.
///
/// # Examples
///
/// ```
/// # use pathtracer::light::AmbientLight;
/// # use pathtracer::core::color::LinearColor;
/// #
/// let amb_light = AmbientLight::new(LinearColor::new(1.0, 0.0, 1.0));
/// ```
pub fn new(color: LinearColor) -> Self {
AmbientLight { color }
}
}
impl Light for AmbientLight {
fn illumination(&self, _: &Point) -> LinearColor {
self.color.clone()
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn new_works() {
let color = LinearColor::new(1., 1., 1.);
let light = AmbientLight::new(color.clone());
let res = AmbientLight { color };
assert_eq!(light, res)
}
#[test]
fn illumination_is_correct() {
let light = AmbientLight::new(LinearColor::new(1., 1., 1.));
let lum = light.illumination(&Point::new(1., 1., 1.));
assert_eq!(lum, LinearColor::new(1., 1., 1.))
}
#[test]
fn deserialization_works() {
let yaml = "color: {r: 1.0, g: 0.5, b: 0.2}";
let light: AmbientLight = serde_yaml::from_str(yaml).unwrap();
assert_eq!(light, AmbientLight::new(LinearColor::new(1., 0.5, 0.2)))
}
}

View file

@ -0,0 +1,92 @@
use super::{Light, SpatialLight};
use crate::core::LinearColor;
use crate::{Point, Vector};
use serde::Deserialize;
/// Represent a light emanating from a far away source, with parallel rays on all points.
#[derive(Debug, PartialEq, Deserialize)]
pub struct DirectionalLight {
#[serde(deserialize_with = "crate::serialize::vector_normalizer")]
direction: Vector,
color: LinearColor,
}
impl DirectionalLight {
/// Creates a new `DirectionalLight`.
///
/// # Examples
///
/// ```
/// # use pathtracer::light::DirectionalLight;
/// # use pathtracer::core::color::LinearColor;
/// # use pathtracer::Vector;
/// #
/// let dir_light = DirectionalLight::new(
/// Vector::new(1.0, 0.0, 0.0),
/// LinearColor::new(1.0, 0.0, 1.0),
/// );
/// ```
pub fn new(direction: Vector, color: LinearColor) -> Self {
DirectionalLight {
direction: direction.normalize(),
color,
}
}
}
impl Light for DirectionalLight {
fn illumination(&self, _: &Point) -> LinearColor {
self.color.clone()
}
}
impl SpatialLight for DirectionalLight {
fn to_source(&self, _: &Point) -> (Vector, f32) {
(self.direction * -1., std::f32::INFINITY)
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn new_works() {
let direction = Vector::new(1., 0., 0.);
let color = LinearColor::new(1., 1., 1.);
let light = DirectionalLight::new(direction, color.clone());
let res = DirectionalLight { direction, color };
assert_eq!(light, res)
}
fn simple_light() -> impl SpatialLight {
let direction = Vector::new(1., 0., 0.);
let color = LinearColor::new(1., 1., 1.);
DirectionalLight::new(direction, color)
}
#[test]
fn illumination_is_correct() {
let light = simple_light();
let lum = light.illumination(&Point::new(1., 1., 1.));
assert_eq!(lum, LinearColor::new(1., 1., 1.))
}
#[test]
fn to_source_is_correct() {
let light = simple_light();
let ans = light.to_source(&Point::new(1., 0., 0.));
let expected = (Vector::new(-1., 0., 0.), std::f32::INFINITY);
assert_eq!(ans, expected)
}
#[test]
fn deserialization_works() {
let yaml = "{direction: [1.0, 0.0, 0.0], color: {r: 1.0, g: 0.5, b: 0.2}}";
let light: DirectionalLight = serde_yaml::from_str(yaml).unwrap();
assert_eq!(
light,
DirectionalLight::new(Vector::new(1., 0., 0.), LinearColor::new(1., 0.5, 0.2))
)
}
}

View file

@ -0,0 +1,28 @@
//! Various light implementations
use super::core::LinearColor;
use super::{Point, Vector};
/// Represent a light in the scene being rendered.
pub trait Light: std::fmt::Debug {
/// Get the illumination of that light on that point.
fn illumination(&self, point: &Point) -> LinearColor;
}
/// Represent a light which has an abstract position in the scene being rendered.
pub trait SpatialLight: Light {
/// Get a unit vector from the origin to the position of the light, and its distance
fn to_source(&self, origin: &Point) -> (Vector, f32);
}
mod ambient_light;
pub use ambient_light::*;
mod directional_light;
pub use directional_light::*;
mod point_light;
pub use point_light::*;
mod spot_light;
pub use spot_light::*;

View file

@ -0,0 +1,91 @@
use super::{Light, SpatialLight};
use crate::core::LinearColor;
use crate::{Point, Vector};
use serde::Deserialize;
/// Represent a light emanating from a point in space, following the square distance law.
#[derive(Debug, PartialEq, Deserialize)]
pub struct PointLight {
position: Point,
color: LinearColor,
}
impl PointLight {
/// Creates a new `PointLight`.
///
/// # Examples
///
/// ```
/// # use pathtracer::light::PointLight;
/// # use pathtracer::core::color::LinearColor;
/// # use pathtracer::Point;
/// #
/// let dir_light = PointLight::new(
/// Point::origin(),
/// LinearColor::new(1.0, 0.0, 1.0),
/// );
/// ```
pub fn new(position: Point, color: LinearColor) -> Self {
PointLight { position, color }
}
}
impl Light for PointLight {
fn illumination(&self, point: &Point) -> LinearColor {
let dist = (self.position - point).norm();
self.color.clone() / dist
}
}
impl SpatialLight for PointLight {
fn to_source(&self, point: &Point) -> (Vector, f32) {
let delt = self.position - point;
let dist = delt.norm();
(delt.normalize(), dist)
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn new_works() {
let position = Point::origin();
let color = LinearColor::black();
let light = PointLight::new(position, color.clone());
let res = PointLight { position, color };
assert_eq!(light, res)
}
fn simple_light() -> impl SpatialLight {
let position = Point::origin();
let color = LinearColor::new(1., 1., 1.);
PointLight::new(position, color)
}
#[test]
fn illumination_is_correct() {
let light = simple_light();
let lum = light.illumination(&Point::new(1., 0., 0.));
assert_eq!(lum, LinearColor::new(1., 1., 1.))
}
#[test]
fn to_source_is_correct() {
let light = simple_light();
let ans = light.to_source(&Point::new(1., 0., 0.));
let expected = (Vector::new(-1., 0., 0.), 1.);
assert_eq!(ans, expected);
}
#[test]
fn deserialization_works() {
let yaml = "{position: [1.0, 1.0, 1.0], color: {r: 1.0, g: 0.5, b: 0.2}}";
let light: PointLight = serde_yaml::from_str(yaml).unwrap();
assert_eq!(
light,
PointLight::new(Point::new(1., 1., 1.), LinearColor::new(1., 0.5, 0.2))
)
}
}

View file

@ -0,0 +1,207 @@
use super::{Light, SpatialLight};
use crate::core::LinearColor;
use crate::{Point, Vector};
use serde::{Deserialize, Deserializer};
/// Represent a light emanating from a directed light-source, outputting rays in a cone.
///
/// The illumination cone cannot have an FOV over 180°.
#[derive(Debug, PartialEq)]
pub struct SpotLight {
position: Point,
direction: Vector,
cosine_value: f32,
color: LinearColor,
}
impl SpotLight {
/// Construct a SpotLight with the given FOV in radian.
pub fn radians_new(
position: Point,
direction: Vector,
fov_rad: f32,
color: LinearColor,
) -> Self {
SpotLight {
position,
direction: direction.normalize(),
cosine_value: (fov_rad / 2.).cos(),
color,
}
}
/// Construct a SpotLight with the given FOV in degrees.
pub fn degrees_new(
position: Point,
direction: Vector,
fov_deg: f32,
color: LinearColor,
) -> Self {
SpotLight::radians_new(
position,
direction,
std::f32::consts::PI * fov_deg / 180.,
color,
)
}
}
impl Light for SpotLight {
fn illumination(&self, point: &Point) -> LinearColor {
let delt = point - self.position;
let cos = self.direction.dot(&delt.normalize());
if cos >= self.cosine_value {
self.color.clone() / delt.norm_squared()
} else {
LinearColor::black()
}
}
}
impl SpatialLight for SpotLight {
fn to_source(&self, point: &Point) -> (Vector, f32) {
let delt = self.position - point;
let dist = delt.norm();
(delt.normalize(), dist)
}
}
#[derive(Debug, Deserialize)]
struct SerializedSpotLight {
position: Point,
#[serde(deserialize_with = "crate::serialize::vector_normalizer")]
direction: Vector,
fov: f32,
color: LinearColor,
}
impl From<SerializedSpotLight> for SpotLight {
fn from(light: SerializedSpotLight) -> Self {
SpotLight::degrees_new(light.position, light.direction, light.fov, light.color)
}
}
impl<'de> Deserialize<'de> for SpotLight {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
let cam: SerializedSpotLight = Deserialize::deserialize(deserializer)?;
Ok(cam.into())
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn radian_new_works() {
let light = SpotLight::radians_new(
Point::origin(),
Vector::new(1., 0., 0.),
std::f32::consts::PI / 2.,
LinearColor::new(1., 1., 1.),
);
// The FOV is 90°, therefore the angle to the direction is 45° [= PI / 4]
let calculated_cosine_value = (std::f32::consts::PI / 4.).cos();
assert_eq!(
light,
SpotLight {
position: Point::origin(),
direction: Vector::new(1., 0., 0.),
cosine_value: calculated_cosine_value,
color: LinearColor::new(1., 1., 1.),
}
);
// Checking this way because of rounding issues...
assert!((calculated_cosine_value - f32::sqrt(2.) / 2.).abs() < 1e-5)
}
#[test]
fn degrees_new_works() {
let light = SpotLight::degrees_new(
Point::origin(),
Vector::new(1., 0., 0.),
60.,
LinearColor::new(1., 1., 1.),
);
let calculated_cosine_value = (std::f32::consts::PI * 60. / 360.).cos();
assert_eq!(
light,
SpotLight {
position: Point::origin(),
direction: Vector::new(1., 0., 0.),
cosine_value: calculated_cosine_value,
color: LinearColor::new(1., 1., 1.),
}
);
// Checking this way because of rounding issues...
assert!((calculated_cosine_value - f32::sqrt(3.) / 2.).abs() < 1e-5)
}
fn simple_light() -> impl SpatialLight {
SpotLight::degrees_new(
Point::origin(),
Vector::new(1., 0., 0.),
90.,
LinearColor::new(1., 1., 1.),
)
}
#[test]
fn illumination_in_axis_works() {
let light = simple_light();
let lum = light.illumination(&Point::new(1., 0., 0.));
assert_eq!(lum, LinearColor::new(1., 1., 1.))
}
#[test]
fn illumination_on_limit_works_1() {
let light = simple_light();
let lum = light.illumination(&Point::new(1., 1., 0.));
assert_eq!(lum, LinearColor::new(0.5, 0.5, 0.5))
}
#[test]
fn illumination_on_limit_works_2() {
let light = simple_light();
let lum = light.illumination(&Point::new(1., 0., 1.));
assert_eq!(lum, LinearColor::new(0.5, 0.5, 0.5))
}
#[test]
fn illumination_out_of_ray_works() {
let light = simple_light();
let lum = light.illumination(&Point::new(1., 1., 1.));
assert_eq!(lum, LinearColor::new(0., 0., 0.))
}
#[test]
fn to_source_is_correct() {
let light = simple_light();
let ans = light.to_source(&Point::new(1., 0., 0.));
let expected = (Vector::new(-1., 0., 0.), 1.);
assert_eq!(ans, expected);
}
#[test]
fn deserialization_works() {
let yaml = r#"
position: [0.0, 0.0, 0.0]
direction: [1.0, 0.0, 0.0]
fov: 90.0
color: {r: 1.0, g: 0.5, b: 0.2}
"#;
let light: SpotLight = serde_yaml::from_str(yaml).unwrap();
assert_eq!(
light,
SpotLight::degrees_new(
Point::origin(),
Vector::new(1., 0., 0.),
90.,
LinearColor::new(1., 0.5, 0.2)
)
)
}
}

24
pathtracer/src/main.rs Normal file
View file

@ -0,0 +1,24 @@
use pathtracer::render::Scene;
use std::path::PathBuf;
use structopt::StructOpt;
#[derive(StructOpt, Debug)]
struct Options {
/// Input description for the scene to be rendered.
#[structopt(short, long, parse(from_os_str), default_value = "scene.yaml")]
input: PathBuf,
/// Output image for the rendered scene.
#[structopt(short, long, parse(from_os_str), default_value = "scene.png")]
output: PathBuf,
}
fn main() -> Result<(), Box<dyn std::error::Error>> {
let options = Options::from_args();
let f = std::fs::File::open(options.input)?;
let scene: Scene = serde_yaml::from_reader(f)?;
let image = scene.render();
image.save(options.output)?;
Ok(())
}

View file

@ -0,0 +1,26 @@
//! Various material implementations
use super::core::LightProperties;
use super::Point2D;
use serde::Deserialize;
/// All the existing `Material` implementation.
#[serde(tag = "type")]
#[serde(rename_all = "lowercase")]
#[allow(missing_docs)]
#[enum_dispatch::enum_dispatch]
#[derive(Debug, PartialEq, Deserialize)]
pub enum MaterialEnum {
#[serde(rename = "uniform")]
UniformMaterial,
}
/// Represent the physical light properties of an object in the scene;
#[enum_dispatch::enum_dispatch(MaterialEnum)]
pub trait Material: std::fmt::Debug {
/// Get the physical properties at a point.
fn properties(&self, point: Point2D) -> LightProperties;
}
mod uniform;
pub use uniform::*;

View file

@ -0,0 +1,86 @@
use super::Material;
use crate::core::LightProperties;
use crate::Point2D;
use serde::Deserialize;
/// A material with the same characteristics on all points.
#[derive(Clone, Debug, PartialEq, Deserialize)]
pub struct UniformMaterial {
#[serde(flatten)]
properties: LightProperties,
}
impl UniformMaterial {
/// Creates a new `UniformMaterial`.
///
/// # Examples
///
/// ```
/// # use pathtracer::material::UniformMaterial;
/// # use pathtracer::core::{LightProperties, LinearColor};
/// #
/// let uni_mat = UniformMaterial::new(
/// LightProperties::new(
/// LinearColor::new(1.0, 0.0, 0.0), // diffuse component
/// LinearColor::new(0.0, 0.0, 0.0), // specular component
/// None,
/// ),
/// );
/// ```
pub fn new(properties: LightProperties) -> Self {
UniformMaterial { properties }
}
}
impl Material for UniformMaterial {
fn properties(&self, _: Point2D) -> LightProperties {
self.properties.clone()
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::core::color::LinearColor;
use crate::core::ReflTransEnum;
#[test]
fn new_works() {
let properties = LightProperties {
diffuse: LinearColor::new(0., 0.5, 0.),
specular: LinearColor::new(1., 1., 1.),
refl_trans: None,
};
let mat = UniformMaterial::new(properties.clone());
assert_eq!(mat, UniformMaterial { properties })
}
#[test]
fn properties_works() {
let properties = LightProperties::new(
LinearColor::new(0., 0.5, 0.),
LinearColor::new(1., 1., 1.),
None,
);
let mat = UniformMaterial::new(properties.clone());
assert_eq!(mat.properties(Point2D::origin()), properties)
}
#[test]
fn deserialization_works() {
let yaml = r#"
diffuse: {r: 1.0, g: 0.5, b: 0.25}
specular: {r: 0.25, g: 0.125, b: 0.75}
reflectivity: 0.25
"#;
let material: UniformMaterial = serde_yaml::from_str(yaml).unwrap();
assert_eq!(
material,
UniformMaterial::new(LightProperties::new(
LinearColor::new(1., 0.5, 0.25),
LinearColor::new(0.25, 0.125, 0.75),
Some(ReflTransEnum::Reflectivity { coef: 0.25 })
))
)
}
}

View file

@ -0,0 +1,161 @@
//! Utility module to compute overall illumination
use crate::light::*;
use serde::Deserialize;
use std::iter::Iterator;
#[derive(Debug, PartialEq, Deserialize)]
/// A struct centralizing the light computation logic.
pub struct LightAggregate {
#[serde(default)]
ambients: Vec<AmbientLight>,
#[serde(default)]
directionals: Vec<DirectionalLight>,
#[serde(default)]
points: Vec<PointLight>,
#[serde(default)]
spots: Vec<SpotLight>,
}
impl LightAggregate {
/// Creates a new empty `LightAggregate`.
///
/// # Examples
///
/// ```
/// # use pathtracer::render::LightAggregate;
/// #
/// let la = LightAggregate::empty();
/// assert_eq!(la.ambient_lights_iter().count(), 0);
/// assert_eq!(la.spatial_lights_iter().count(), 0);
/// ```
pub fn empty() -> Self {
LightAggregate::new(vec![], vec![], vec![], vec![])
}
/// Creates a new `LightAggregate` from `Vec`s of [`Light`]s.
///
/// [`Light`]: ../../light/trait.Light.html
///
/// # Examples
///
/// ```
/// # use pathtracer::render::LightAggregate;
/// #
/// let la = LightAggregate::new(
/// Vec::new(),
/// Vec::new(),
/// Vec::new(),
/// Vec::new(),
/// );
/// assert_eq!(la.ambient_lights_iter().count(), 0);
/// assert_eq!(la.spatial_lights_iter().count(), 0);
/// ```
pub fn new(
ambients: Vec<AmbientLight>,
directionals: Vec<DirectionalLight>,
points: Vec<PointLight>,
spots: Vec<SpotLight>,
) -> Self {
LightAggregate {
ambients,
directionals,
points,
spots,
}
}
/// Returns an iterator over the aggregate's [`AmbientLight`]s.
///
/// [`AmbientLight`]: ../../light/ambient_light/struct.AmbientLight.html
pub fn ambient_lights_iter(&self) -> impl Iterator<Item = &'_ dyn Light> {
self.ambients.iter().map(|l| l as &dyn Light)
}
/// Returns an iterator over the aggregate's [`SpatialLight`]s.
///
/// This simply merges iterators over [`DirectionalLight`], [`PointLight`] and [`SpotLight`].
///
/// [`SpatialLight`]: ../../light/trait.SpatialLight.html
/// [`DirectionalLight`]: ../../light/directional_light/struct.DirectionalLight.html
/// [`PointLight`]: ../../light/point_light/struct.PointLight.html
/// [`Spotight`]: ../../light/spot_light/struct.Spotight.html
pub fn spatial_lights_iter(&self) -> impl Iterator<Item = &'_ dyn SpatialLight> {
self.directionals
.iter()
.map(|l| l as &dyn SpatialLight)
.chain(self.points.iter().map(|l| l as &dyn SpatialLight))
.chain(self.spots.iter().map(|l| l as &dyn SpatialLight))
}
}
impl Default for LightAggregate {
fn default() -> Self {
LightAggregate::empty()
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn empty_works() {
let lights = LightAggregate::empty();
assert_eq!(
lights,
LightAggregate {
ambients: vec![],
directionals: vec![],
points: vec![],
spots: vec![],
}
)
}
#[test]
fn default_is_empty() {
let lights = <LightAggregate as Default>::default();
assert_eq!(lights, LightAggregate::empty())
}
#[test]
fn deserialization_works() {
use crate::{core::LinearColor, Point, Vector};
let yaml = r#"
ambients:
- color: {r: 1.0, g: 0.5, b: 0.2}
directionals:
- direction: [1.0, 0.0, 0.0]
color: {r: 1.0, g: 0.5, b: 0.2}
points:
- position: [1.0, 1.0, 1.0]
color: {r: 1.0, g: 0.5, b: 0.2}
spots:
- position: [0.0, 0.0, 0.0]
direction: [1.0, 0.0, 0.0]
fov: 90.0
color: {r: 1.0, g: 0.5, b: 0.2}
"#;
let expected = LightAggregate::new(
vec![AmbientLight::new(LinearColor::new(1., 0.5, 0.2))],
vec![DirectionalLight::new(
Vector::new(1., 0., 0.),
LinearColor::new(1., 0.5, 0.2),
)],
vec![PointLight::new(
Point::new(1., 1., 1.),
LinearColor::new(1., 0.5, 0.2),
)],
vec![SpotLight::degrees_new(
Point::origin(),
Vector::new(1., 0., 0.),
90.,
LinearColor::new(1., 0.5, 0.2),
)],
);
let lights: LightAggregate = serde_yaml::from_str(yaml).unwrap();
assert_eq!(lights, expected)
}
}

View file

@ -0,0 +1,12 @@
//! Rendering logic
pub mod light_aggregate;
pub use light_aggregate::*;
pub mod object;
pub use object::*;
pub mod scene;
pub use scene::*;
pub(crate) mod utils;

View file

@ -0,0 +1,135 @@
//! Logic for the scene objects
use crate::material::MaterialEnum;
use crate::shape::{Shape, ShapeEnum};
use crate::texture::TextureEnum;
use bvh::aabb::{Bounded, AABB};
use bvh::bounding_hierarchy::BHShape;
use serde::Deserialize;
/// An object being rendered in the scene.
#[derive(Debug, PartialEq, Deserialize)]
pub struct Object {
/// The `Object`'s physical shape
pub shape: ShapeEnum,
/// The `Object`'s material
pub material: MaterialEnum,
/// The `Object`'s texture
pub texture: TextureEnum,
#[serde(skip_deserializing)]
/// Index inside the `BVH`
index: usize,
}
impl Object {
/// Creates a new `Object`.
///
/// # Examples
///
/// ```
/// # use pathtracer::core::{LightProperties, LinearColor};
/// # use pathtracer::material::UniformMaterial;
/// # use pathtracer::render::Object;
/// # use pathtracer::shape::Sphere;
/// # use pathtracer::texture::UniformTexture;
/// # use pathtracer::Point;
/// #
/// let obj = Object::new(
/// Sphere::new(Point::origin(), 1.0).into(),
/// UniformMaterial::new(
/// LightProperties::new(
/// LinearColor::new(1.0, 0.0, 0.0), // diffuse component
/// LinearColor::new(0.0, 0.0, 0.0), // specular component
/// None,
/// ),
/// ).into(),
/// UniformTexture::new(LinearColor::new(0.5, 0.5, 0.5)).into(),
/// );
/// ```
pub fn new(shape: ShapeEnum, material: MaterialEnum, texture: TextureEnum) -> Self {
Object {
shape,
material,
texture,
index: 0,
}
}
}
impl Bounded for Object {
fn aabb(&self) -> AABB {
self.shape.aabb()
}
}
impl BHShape for Object {
fn set_bh_node_index(&mut self, index: usize) {
self.index = index
}
fn bh_node_index(&self) -> usize {
self.index
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::core::color::LinearColor;
use crate::core::LightProperties;
use crate::material::UniformMaterial;
use crate::shape::Sphere;
use crate::texture::UniformTexture;
use crate::Point;
fn simple_object() -> Object {
let shape = Sphere::new(Point::new(5., 0., 0.), 1.);
let material = UniformMaterial::new(LightProperties::new(
LinearColor::new(0.5, 0.5, 0.5),
LinearColor::new(1., 1., 1.),
None,
));
let texture = UniformTexture::new(LinearColor::new(0.25, 0.5, 1.));
Object::new(shape.into(), material.into(), texture.into())
}
#[test]
fn new_works() {
let shape = Sphere::new(Point::new(5., 0., 0.), 1.);
let material = UniformMaterial::new(LightProperties::new(
LinearColor::new(0.5, 0.5, 0.5),
LinearColor::new(1., 1., 1.),
None,
));
let texture = UniformTexture::new(LinearColor::new(0.25, 0.5, 1.));
assert_eq!(
simple_object(),
Object {
shape: shape.into(),
material: material.into(),
texture: texture.into(),
index: 0,
}
)
}
#[test]
fn deserialization_works() {
let yaml = r#"
shape:
type: sphere
inverted: false
center: [5., 0.0, 0.0]
radius: 1.0
material:
type: uniform
diffuse: {r: 0.5, g: 0.5, b: 0.5}
specular: {r: 1., g: 1., b: 1.}
texture:
type: uniform
color: {r: 0.25, g: 0.5, b: 1.}
"#;
let object: Object = serde_yaml::from_str(yaml).unwrap();
let expected = simple_object();
assert_eq!(object, expected)
}
}

View file

@ -0,0 +1,363 @@
//! Scene rendering logic
use std::cmp::Ordering;
use super::{light_aggregate::LightAggregate, object::Object, utils::*};
use crate::{
core::{Camera, LightProperties, LinearColor, ReflTransEnum},
material::Material,
shape::Shape,
texture::Texture,
{Point, Vector},
};
use bvh::{bvh::BVH, ray::Ray};
use image::RgbImage;
use rand::prelude::thread_rng;
use rand::Rng;
use serde::{Deserialize, Deserializer};
/// Represent the scene being rendered.
pub struct Scene {
camera: Camera,
lights: LightAggregate,
objects: Vec<Object>,
bvh: BVH,
aliasing_limit: u32,
reflection_limit: u32,
diffraction_index: f32,
}
impl Scene {
/// Creates a new `Scene`.
///
/// # Examples
///
/// ```
/// # use pathtracer::core::{Camera, LightProperties, LinearColor};
/// # use pathtracer::material::UniformMaterial;
/// # use pathtracer::render::{LightAggregate, Object, Scene};
/// # use pathtracer::shape::Sphere;
/// # use pathtracer::texture::UniformTexture;
/// # use pathtracer::Point;
/// #
/// let scene = Scene::new(
/// Camera::default(),
/// LightAggregate::empty(),
/// vec![
/// Object::new(
/// Sphere::new(Point::origin(), 1.0).into(),
/// UniformMaterial::new(
/// LightProperties::new(
/// LinearColor::new(1.0, 0.0, 0.0), // diffuse component
/// LinearColor::new(0.0, 0.0, 0.0), // specular component
/// None,
/// ),
/// ).into(),
/// UniformTexture::new(LinearColor::new(0.5, 0.5, 0.5)).into(),
/// ),
/// ],
/// 5, // aliasing limit
/// 3, // reflection recursion limit
/// 0.0, // diffraction index
/// );
/// ```
pub fn new(
camera: Camera,
lights: LightAggregate,
mut objects: Vec<Object>,
aliasing_limit: u32,
reflection_limit: u32,
diffraction_index: f32,
) -> Self {
// NOTE(Antoine): fun fact: BVH::build stack overflows when given an empty slice :)
let bvh = BVH::build(&mut objects);
Scene {
camera,
lights,
objects,
bvh,
aliasing_limit,
reflection_limit,
diffraction_index,
}
}
/// Render the scene into an image.
pub fn render(&self) -> RgbImage {
let mut image = RgbImage::new(self.camera.film().width(), self.camera.film().height());
let total = (image.width() * image.height()) as u64;
let pb = indicatif::ProgressBar::new(total);
pb.set_draw_delta(total / 10000);
pb.set_style(indicatif::ProgressStyle::default_bar().template(
"{spinner:.green} [{elapsed_precise}] [{wide_bar:.cyan/blue}] {percent:>3}%: {pos}/{len} pixels (ETA: {eta})",
));
let pixel_func = if self.aliasing_limit > 0 {
Self::anti_alias_pixel
} else {
Self::pixel
};
rayon::scope(|s| {
// FIXME(Bruno): it would go even faster to cut the image in blocks of rows, leading to
// better cache-line behaviour...
for (_, row) in image.enumerate_rows_mut() {
s.spawn(|_| {
for (x, y, pixel) in row {
*pixel = pixel_func(&self, x as f32, y as f32).into();
pb.inc(1);
}
})
}
});
pb.finish();
image
}
/// Get pixel color for (x, y) a pixel **coordinate**
fn pixel(&self, x: f32, y: f32) -> LinearColor {
let (x, y) = self.camera.film().pixel_ratio(x, y);
let pixel = self.camera.film().pixel_at_ratio(x, y);
let direction = (pixel - self.camera.origin()).normalize();
let indices = RefractionInfo::with_index(self.diffraction_index);
self.cast_ray(Ray::new(pixel, direction))
.map_or_else(LinearColor::black, |(t, obj)| {
self.color_at(
pixel + direction * t,
obj,
direction,
self.reflection_limit,
indices,
)
})
}
/// Get pixel color with anti-aliasing
fn anti_alias_pixel(&self, x: f32, y: f32) -> LinearColor {
let range = 0..self.aliasing_limit;
let mut rng = thread_rng();
let acc: LinearColor = range
.map(|_| {
let random_x: f32 = rng.gen();
let random_y: f32 = rng.gen();
self.pixel(x + random_x, y + random_y)
})
.map(LinearColor::clamp)
.sum();
acc / self.aliasing_limit as f32
}
fn cast_ray(&self, ray: Ray) -> Option<(f32, &Object)> {
self.bvh
.traverse(&ray, &self.objects)
.iter()
.filter_map(|obj| obj.shape.intersect(&ray).map(|distance| (distance, *obj)))
.min_by(|(dist_a, _), (dist_b, _)| {
dist_a.partial_cmp(dist_b).unwrap_or(Ordering::Equal)
})
}
fn color_at(
&self,
point: Point,
object: &Object,
incident_ray: Vector,
reflection_limit: u32,
mut indices: RefractionInfo,
) -> LinearColor {
let texel = object.shape.project_texel(&point);
let properties = object.material.properties(texel);
let object_color = object.texture.texel_color(texel);
let normal = object.shape.normal(&point);
let reflected_ray = reflected(incident_ray, normal);
let lighting = self.illuminate(point, object_color, &properties, normal, reflected_ray);
if properties.refl_trans.is_none() {
// Avoid calculating reflection when not needed
return lighting;
}
let reflected = self.reflection(point, reflected_ray, reflection_limit, indices.clone());
// We can unwrap safely thanks to the check for None before
match properties.refl_trans.unwrap() {
ReflTransEnum::Transparency { coef, index } => {
// Calculate the refracted ray, if it was refracted, and mutate indices accordingly
refracted(incident_ray, normal, &mut indices, index).map_or_else(
// Total reflection
|| reflected.clone(),
// Refraction (refracted ray, amount of *reflection*)
|(r, refl_t)| {
let refracted = self.refraction(point, coef, r, reflection_limit, indices);
let refr_light = refracted * (1. - refl_t) + reflected.clone() * refl_t;
refr_light * coef + lighting * (1. - coef)
},
)
}
ReflTransEnum::Reflectivity { coef } => reflected * coef + lighting * (1. - coef),
}
}
fn refraction(
&self,
point: Point,
transparency: f32,
refracted: Vector,
reflection_limit: u32,
indices: RefractionInfo,
) -> LinearColor {
if transparency > 1e-5 && reflection_limit > 0 {
let refraction_start = point + refracted * 0.001;
if let Some((t, obj)) = self.cast_ray(Ray::new(refraction_start, refracted)) {
let resulting_position = refraction_start + refracted * t;
let refracted = self.color_at(
resulting_position,
obj,
refracted,
reflection_limit - 1,
indices,
);
return refracted * transparency;
}
}
LinearColor::black()
}
fn reflection(
&self,
point: Point,
reflected: Vector,
reflection_limit: u32,
indices: RefractionInfo,
) -> LinearColor {
if reflection_limit > 0 {
let reflection_start = point + reflected * 0.001;
if let Some((t, obj)) = self.cast_ray(Ray::new(reflection_start, reflected)) {
let resulting_position = reflection_start + reflected * t;
let color = self.color_at(
resulting_position,
obj,
reflected,
reflection_limit - 1,
indices,
);
return color;
}
};
LinearColor::black()
}
fn illuminate(
&self,
point: Point,
object_color: LinearColor,
properties: &LightProperties,
normal: Vector,
reflected: Vector,
) -> LinearColor {
let ambient = self.illuminate_ambient(object_color.clone());
let spatial = self.illuminate_spatial(point, properties, normal, reflected);
ambient + object_color * spatial
}
fn illuminate_ambient(&self, color: LinearColor) -> LinearColor {
self.lights
.ambient_lights_iter()
.map(|light| color.clone() * light.illumination(&Point::origin()))
.map(LinearColor::clamp)
.sum()
}
fn illuminate_spatial(
&self,
point: Point,
properties: &LightProperties,
normal: Vector,
reflected: Vector,
) -> LinearColor {
self.lights
.spatial_lights_iter()
.map(|light| {
let (direction, t) = light.to_source(&point);
let light_ray = Ray::new(point + 0.001 * direction, direction);
match self.cast_ray(light_ray) {
// Take shadows into account
Some((obstacle_t, _)) if obstacle_t < t => return LinearColor::black(),
_ => {}
}
let lum = light.illumination(&point);
let diffused = properties.diffuse.clone() * normal.dot(&direction);
let specular = properties.specular.clone() * reflected.dot(&direction);
lum * (diffused + specular)
})
.map(LinearColor::clamp)
.sum()
}
}
#[derive(Debug, PartialEq, Deserialize)]
struct SerializedScene {
camera: Camera,
#[serde(default)]
lights: LightAggregate,
#[serde(default)]
objects: Vec<Object>,
#[serde(default)]
aliasing_limit: u32,
#[serde(default)]
reflection_limit: u32,
#[serde(default = "crate::serialize::default_identity")]
starting_diffraction: f32,
}
impl From<SerializedScene> for Scene {
fn from(scene: SerializedScene) -> Self {
Scene::new(
scene.camera,
scene.lights,
scene.objects,
scene.aliasing_limit,
scene.reflection_limit,
scene.starting_diffraction,
)
}
}
impl<'de> Deserialize<'de> for Scene {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
let cam: SerializedScene = Deserialize::deserialize(deserializer)?;
Ok(cam.into())
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn deserialization_works() {
let yaml = std::include_str!("../../examples/scene.yaml");
let _: Scene = serde_yaml::from_str(yaml).unwrap();
// FIXME: actually test the equality ?
}
#[test]
#[ignore] // stack overflow because of BVH :(
fn bvh_fails() {
use crate::core::Camera;
use crate::render::{LightAggregate, Scene};
let _scene = Scene::new(
Camera::default(),
LightAggregate::empty(),
Vec::new(), // Objects list
5, // aliasing limit
3, // reflection recursion limit
0.0, // diffraction index
);
}
}

View file

@ -0,0 +1,67 @@
use crate::Vector;
pub fn reflected(incident: Vector, normal: Vector) -> Vector {
let proj = incident.dot(&normal);
let delt = normal * (proj * 2.);
(incident - delt).normalize()
}
/// Returns None if the ray was totally reflected, Some(refracted_ray, reflected_amount) if not
/// Adds an element to the top of indices that should be removed
pub fn refracted(
incident: Vector,
normal: Vector,
indices: &mut RefractionInfo,
new_index: f32,
) -> Option<(Vector, f32)> {
let cos1 = incident.dot(&normal);
let normal = if cos1 < 0. {
// Entering object, change the medium
indices.enter_medium(new_index); // The old index is now in old_index
normal
} else {
// Exiting object, exit the medium
indices.exit_medium(); // We swapped the indices
-normal
};
let (n_1, n_2) = (indices.old_index, indices.new_index);
let eta = n_1 / n_2;
let k = 1. - eta * eta * (1. - cos1 * cos1);
if k < 0. {
return None;
}
let cos1 = cos1.abs();
let cos2 = k.sqrt();
let refracted = eta * incident + (eta * cos1 - cos2) * normal;
let f_r = (n_2 * cos1 - n_1 * cos2) / (n_2 * cos1 + n_1 * cos2);
let f_t = (n_1 * cos2 - n_2 * cos1) / (n_1 * cos2 + n_2 * cos1);
let refl_t = (f_r * f_r + f_t * f_t) / 2.;
//Some((refracted, 0.))
Some((refracted.normalize(), refl_t))
}
#[derive(Debug, PartialEq, Clone)]
pub struct RefractionInfo {
pub old_index: f32,
pub new_index: f32,
}
impl RefractionInfo {
pub fn with_index(index: f32) -> Self {
RefractionInfo {
old_index: index,
new_index: index,
}
}
pub fn enter_medium(&mut self, index: f32) {
*self = RefractionInfo {
old_index: self.new_index,
new_index: index,
}
}
pub fn exit_medium(&mut self) {
std::mem::swap(&mut self.old_index, &mut self.new_index)
}
}

View file

@ -0,0 +1,6 @@
//! Helper functions deserialize coefficients.
/// Returns the identity for a f32, i.e. 1.0.
pub fn default_identity() -> f32 {
1.
}

View file

@ -0,0 +1,7 @@
//! Helper functions to help scene (de)serialization
pub mod vector;
pub use vector::*;
pub mod coefficient;
pub use coefficient::*;

View file

@ -0,0 +1,15 @@
//! Helper functions to deserialize `Vector` values.
use crate::Vector;
use serde::de::{Deserialize, Deserializer};
/// Deserialize a vector.
///
/// Needs a custom implementation to make sur the vector is normalized when deserialized.
pub fn vector_normalizer<'de, D>(deserializer: D) -> Result<Vector, D::Error>
where
D: Deserializer<'de>,
{
let v: Vector = Deserialize::deserialize(deserializer)?;
Ok(v.normalize())
}

View file

@ -0,0 +1,44 @@
//! Various shape implementations
use super::{Point, Point2D, Vector};
use bvh::{
aabb::{Bounded, AABB},
ray::Ray,
};
use serde::Deserialize;
/// All the existing `Shape` implementation.
#[serde(tag = "type")]
#[serde(rename_all = "lowercase")]
#[allow(missing_docs)]
#[enum_dispatch::enum_dispatch]
#[derive(Debug, PartialEq, Deserialize)]
pub enum ShapeEnum {
Sphere,
Triangle,
}
/// Represent an abstract shape inside the scene.
#[enum_dispatch::enum_dispatch(ShapeEnum)]
pub trait Shape: std::fmt::Debug {
/// Return the distance at which the object intersects with the ray, or None if it does not.
fn intersect(&self, ray: &Ray) -> Option<f32>;
/// Return the unit vector corresponding to the normal at this point of the shape.
fn normal(&self, point: &Point) -> Vector;
/// Project the point from the shape's surface to its texel coordinates.
fn project_texel(&self, point: &Point) -> Point2D;
/// Enclose the `Shape` in an axi-aligned bounding-box.
fn aabb(&self) -> AABB;
}
impl Bounded for dyn Shape {
fn aabb(&self) -> AABB {
self.aabb()
}
}
mod sphere;
pub use sphere::*;
mod triangle;
pub use triangle::*;

View file

@ -0,0 +1,176 @@
use super::Shape;
use crate::{Point, Point2D, Vector};
use bvh::aabb::AABB;
use bvh::ray::Ray;
use serde::Deserialize;
/// Represent a sphere shape inside the scene.
#[derive(Clone, Debug, PartialEq, Deserialize)]
pub struct Sphere {
/// The sphere is inverted if it is expected to be seen from the inside.
#[serde(default)]
inverted: bool,
/// The center of the sphere in space.
center: Point,
/// The radius of the sphere being rendered.
radius: f32,
}
impl Sphere {
/// Return a sphere which should be rendered as seen from the outside.
pub fn new(center: Point, radius: f32) -> Self {
Sphere {
center,
radius,
inverted: false,
}
}
/// Return a sphere which should be rendered as seen from the inside.
pub fn inverted_new(center: Point, radius: f32) -> Self {
Sphere {
center,
radius,
inverted: true,
}
}
}
impl Shape for Sphere {
fn intersect(&self, ray: &Ray) -> Option<f32> {
use std::mem;
let delt = self.center - ray.origin;
let tca = ray.direction.dot(&delt);
let d2 = delt.norm_squared() - tca * tca;
let r_2 = self.radius * self.radius;
if d2 > r_2 {
return None;
}
let thc = (r_2 - d2).sqrt();
let mut t_0 = tca - thc;
let mut t_1 = tca + thc;
if t_0 > t_1 {
mem::swap(&mut t_0, &mut t_1)
}
if t_0 < 0. {
t_0 = t_1
}
if t_0 < 0. {
None
} else {
Some(t_0)
}
}
fn normal(&self, point: &Point) -> Vector {
let delt = if self.inverted {
self.center - point
} else {
point - self.center
};
delt.normalize()
}
fn project_texel(&self, point: &Point) -> Point2D {
// Project the sphere on the XY-plane
Point2D::new(
0.5 + (point.x - self.center.x) / (2. * self.radius),
0.5 + (point.y - self.center.y) / (2. * self.radius),
)
}
fn aabb(&self) -> AABB {
let delt = Vector::new(self.radius, self.radius, self.radius);
let min = self.center - delt;
let max = self.center + delt;
AABB::with_bounds(min, max)
}
}
#[cfg(test)]
mod test {
use super::*;
fn simple_sphere() -> Sphere {
Sphere::new(Point::origin(), 1.)
}
#[test]
fn intersect_along_axis_works() {
let sphere = simple_sphere();
let ray = Ray::new(Point::new(-2., 0., 0.), Vector::new(1., 0., 0.));
assert_eq!(sphere.intersect(&ray), Some(1.))
}
#[test]
fn non_intersect_along_axis_works() {
let sphere = simple_sphere();
let ray = Ray::new(Point::new(-2., 0., 0.), Vector::new(-1., 0., 0.));
assert_eq!(sphere.intersect(&ray), None)
}
#[test]
fn intersect_not_on_axis() {
let sphere = simple_sphere();
let ray = Ray::new(Point::new(1., 1., 1.), Vector::new(-1., -1., -1.));
assert_eq!(sphere.intersect(&ray), Some(f32::sqrt(3.) - 1.))
}
#[test]
fn normal_works() {
let sphere = simple_sphere();
assert_eq!(
sphere.normal(&Point::new(-1., 0., 0.)),
Vector::new(-1., 0., 0.)
)
}
#[test]
fn inverted_normal_works() {
let sphere = Sphere::inverted_new(Point::origin(), 1.);
assert_eq!(
sphere.normal(&Point::new(-1., 0., 0.)),
Vector::new(1., 0., 0.)
)
}
#[test]
fn projection_works_1() {
let sphere = simple_sphere();
let projection = sphere.project_texel(&Point::new(-1., -1., 1.));
assert!(projection.x.abs() < 1e-5);
assert!(projection.y.abs() < 1e-5)
}
#[test]
fn projection_works_2() {
let sphere = simple_sphere();
let projection = sphere.project_texel(&Point::new(1., -1., 1.));
assert!((projection.x - 1.).abs() < 1e-5);
assert!(projection.y.abs() < 1e-5)
}
#[test]
fn projection_works_3() {
let sphere = simple_sphere();
let projection = sphere.project_texel(&Point::new(1., 0., 1.));
assert!((projection.x - 1.).abs() < 1e-5);
assert!((projection.y - 0.5).abs() < 1e-5)
}
#[test]
fn deserialization_works() {
let yaml = r#"
inverted: false
center: [0.5, 1.0, 2.0]
radius: 2.5
"#;
let sphere: Sphere = serde_yaml::from_str(yaml).unwrap();
assert_eq!(sphere, Sphere::new(Point::new(0.5, 1.0, 2.0), 2.5))
}
}

View file

@ -0,0 +1,242 @@
use super::Shape;
use crate::{Point, Point2D, Vector};
use bvh::aabb::AABB;
use bvh::ray::Ray;
use serde::{Deserialize, Deserializer};
/// Represent a triangle inside the scene.
#[derive(Clone, Debug, PartialEq)]
pub struct Triangle {
c0: Point,
c0c1: Vector,
c0c2: Vector,
}
impl Triangle {
/// Creates a new `Triangle` from 3 [`Point`]s.
///
/// [`Point`]: ../../type.Point.html
///
/// # Examples
///
/// ```
/// # use pathtracer::shape::Triangle;
/// # use pathtracer::Point;
/// #
/// let t = Triangle::new(
/// Point::new(1.0, 0.0, 0.0),
/// Point::new(0.0, 1.0, 0.0),
/// Point::new(0.0, 0.0, 1.0),
/// );
/// ```
pub fn new(c0: Point, c1: Point, c2: Point) -> Self {
Triangle {
c0,
c0c1: c1 - c0,
c0c2: c2 - c0,
}
}
fn barycentric(&self, point: &Point) -> Point2D {
let c0_pos = point - self.c0;
// P - A = u * (B - A) + v * (C - A)
// (C - A) = v0 is c0c2
// (B - A) = v1 is c0c1
// (P - A) = v2 is c0_pos
let dot00 = self.c0c2.dot(&self.c0c2);
let dot01 = self.c0c2.dot(&self.c0c1);
let dot02 = self.c0c2.dot(&c0_pos);
let dot11 = self.c0c1.dot(&self.c0c1);
let dot12 = self.c0c1.dot(&c0_pos);
let inv_denom = 1. / (dot00 * dot11 - dot01 * dot01);
let u = (dot00 * dot12 - dot01 * dot02) * inv_denom;
let v = (dot11 * dot02 - dot01 * dot12) * inv_denom;
Point2D::new(u, v)
}
}
impl Shape for Triangle {
fn intersect(&self, ray: &Ray) -> Option<f32> {
let pvec = ray.direction.cross(&self.c0c2);
let det = self.c0c1.dot(&pvec);
if det.abs() < 1e-5 {
return None;
}
let to_ray = ray.origin - self.c0;
let inv_det = 1. / det;
let u = to_ray.dot(&pvec) * inv_det;
if u < 0. || u > 1. {
return None;
}
let qvec = to_ray.cross(&self.c0c1);
let v = ray.direction.dot(&qvec) * inv_det;
if v < 0. || u + v > 1. {
return None;
}
let t = self.c0c2.dot(&qvec) * inv_det;
if t < 0. {
None
} else {
Some(t)
}
}
fn normal(&self, _: &Point) -> Vector {
self.c0c1.cross(&self.c0c2).normalize()
}
fn project_texel(&self, point: &Point) -> Point2D {
self.barycentric(point)
}
fn aabb(&self) -> AABB {
AABB::empty()
.grow(&self.c0)
.grow(&(self.c0 + self.c0c1))
.grow(&(self.c0 + self.c0c2))
}
}
#[derive(Debug, Deserialize)]
struct SerializedTriangle {
corners: [Point; 3],
}
impl From<SerializedTriangle> for Triangle {
fn from(triangle: SerializedTriangle) -> Self {
Triangle::new(
triangle.corners[0],
triangle.corners[1],
triangle.corners[2],
)
}
}
impl<'de> Deserialize<'de> for Triangle {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
let cam: SerializedTriangle = Deserialize::deserialize(deserializer)?;
Ok(cam.into())
}
}
#[cfg(test)]
mod test {
use super::*;
fn simple_triangle() -> Triangle {
Triangle::new(
Point::origin(),
Point::new(0., 1., 1.),
Point::new(0., 1., 0.),
)
}
#[test]
fn intersect_along_normal_works() {
let triangle = simple_triangle();
let ans = triangle.intersect(&Ray::new(
Point::new(-1., 0.5, 0.5),
Vector::new(1., 0., 0.),
));
assert_eq!(ans, Some(1.0))
}
#[test]
fn intersect_at_angle_works() {
let triangle = simple_triangle();
let ans = triangle.intersect(&Ray::new(
Point::new(-1., 0.5, 0.),
Vector::new(1., 0., 0.5),
));
assert!(ans.is_some());
assert!((ans.unwrap() - f32::sqrt(1.0 + 0.25)).abs() < 1e-5)
}
#[test]
fn intersect_out_of_bounds_is_none() {
let triangle = simple_triangle();
let ans = triangle.intersect(&Ray::new(Point::new(-1., 0.5, 0.), Vector::new(1., 1., 1.)));
assert_eq!(ans, None)
}
#[test]
fn normal_works() {
let triangle = simple_triangle();
let normal = triangle.normal(&Point::origin());
assert_eq!(normal, Vector::new(-1., 0., 0.));
}
#[test]
fn project_texel_works_1() {
let triangle = simple_triangle();
let ans = triangle.project_texel(&Point::origin());
assert!((ans - Point2D::origin()).magnitude() < 1e-5)
}
#[test]
fn project_texel_works_2() {
let triangle = simple_triangle();
let ans = triangle.project_texel(&Point::new(0., 1., 1.));
assert!((ans - Point2D::new(1., 0.)).norm() < 1e-5)
}
#[test]
fn project_texel_works_3() {
let triangle = simple_triangle();
let ans = triangle.project_texel(&Point::new(0., 1., 0.));
assert!((ans - Point2D::new(0., 1.)).norm() < 1e-5)
}
#[test]
fn project_texel_works_4() {
let triangle = Triangle::new(
Point::new(0., f32::sqrt(3.) / 2., 0.),
Point::new(-0.5, 0., 0.),
Point::new(0.5, 0., 0.),
);
// The centroid is at a third of the length of the height of the triangle
let ans = triangle.project_texel(&Point::new(0., f32::sqrt(3.) / 6., 0.));
assert!((ans - Point2D::new(1. / 3., 1. / 3.)).norm() < 1e-5);
}
#[test]
fn project_texel_works_5() {
let triangle = Triangle::new(
Point::new(0., f32::sqrt(3.) / 2., 0.),
Point::new(-0.5, 0., 0.),
Point::new(0.5, 0., 0.),
);
// The centroid is at a third of the length of the height of the triangle
let ans = triangle.project_texel(&Point::origin());
assert!((ans - Point2D::new(0.5, 0.5)).norm() < 1e-5);
}
#[test]
fn deserialization_works() {
let yaml = r#"
corners:
- [0.0, 0.0, 0.0]
- [0.0, 1.0, 1.0]
- [0.0, 1.0, 0.0]
"#;
let triangle: Triangle = serde_yaml::from_str(yaml).unwrap();
assert_eq!(
triangle,
Triangle::new(
Point::origin(),
Point::new(0., 1., 1.),
Point::new(0., 1., 0.)
)
)
}
}

View file

@ -0,0 +1,26 @@
//! Various texture implementations
use super::core::LinearColor;
use super::Point2D;
use serde::Deserialize;
/// All the existing `Texture` implementation.
#[serde(tag = "type")]
#[serde(rename_all = "lowercase")]
#[allow(missing_docs)]
#[enum_dispatch::enum_dispatch]
#[derive(Debug, PartialEq, Deserialize)]
pub enum TextureEnum {
#[serde(rename = "uniform")]
UniformTexture,
}
/// Represent an object's texture.
#[enum_dispatch::enum_dispatch(TextureEnum)]
pub trait Texture: std::fmt::Debug {
/// Get the color at a given texel coordinate
fn texel_color(&self, point: Point2D) -> LinearColor;
}
mod uniform;
pub use uniform::*;

View file

@ -0,0 +1,69 @@
use super::Texture;
use crate::core::LinearColor;
use crate::Point2D;
use serde::Deserialize;
/// A texture with the same color on all points.
#[derive(Clone, Debug, PartialEq, Deserialize)]
pub struct UniformTexture {
color: LinearColor,
}
impl UniformTexture {
/// Creates a new `UniformTexture`.
///
/// # Examples
///
/// ```
/// # use pathtracer::texture::UniformTexture;
/// # use pathtracer::core::LinearColor;
/// #
/// let uni_text = UniformTexture::new(LinearColor::new(0.5, 0.5, 0.5));
/// ```
pub fn new(color: LinearColor) -> Self {
UniformTexture { color }
}
}
impl Texture for UniformTexture {
fn texel_color(&self, _: Point2D) -> LinearColor {
self.color.clone()
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn new_works() {
let color = LinearColor::new(0.2, 0.4, 0.6);
let texture = UniformTexture::new(color.clone());
assert_eq!(texture, UniformTexture { color })
}
fn simple_texture() -> UniformTexture {
UniformTexture::new(LinearColor::new(0.25, 0.5, 1.))
}
#[test]
fn texel_color_works() {
let texture = simple_texture();
assert_eq!(
texture.texel_color(Point2D::origin()),
LinearColor::new(0.25, 0.5, 1.)
)
}
#[test]
fn deserialization_works() {
let yaml = r#"
color: {r: 1.0, g: 0.5, b: 0.25}
"#;
let texture: UniformTexture = serde_yaml::from_str(yaml).unwrap();
assert_eq!(
texture,
UniformTexture::new(LinearColor::new(1., 0.5, 0.25))
)
}
}