129 lines
3.5 KiB
Python
129 lines
3.5 KiB
Python
|
#!/usr/bin/env python
|
||
|
|
||
|
import dataclasses
|
||
|
import enum
|
||
|
import heapq
|
||
|
import sys
|
||
|
from collections.abc import Iterator
|
||
|
from typing import NamedTuple
|
||
|
|
||
|
|
||
|
class Point(NamedTuple):
|
||
|
x: int
|
||
|
y: int
|
||
|
|
||
|
def neighbours(self) -> Iterator["Point"]:
|
||
|
for dx, dy in (
|
||
|
(-1, 0),
|
||
|
(1, 0),
|
||
|
(0, -1),
|
||
|
(0, 1),
|
||
|
):
|
||
|
yield Point(self.x + dx, self.y + dy)
|
||
|
|
||
|
|
||
|
class Region(enum.IntEnum):
|
||
|
ROCKY = 0
|
||
|
WET = 1
|
||
|
NARROW = 2
|
||
|
|
||
|
|
||
|
@dataclasses.dataclass
|
||
|
class Cave:
|
||
|
depth: int
|
||
|
target: Point
|
||
|
erosion: dict[Point, int] = dataclasses.field(init=False)
|
||
|
|
||
|
def __post_init__(self) -> None:
|
||
|
self.erosion = {}
|
||
|
|
||
|
def erosion_at(self, p: Point) -> int:
|
||
|
if p in self.erosion:
|
||
|
return self.erosion[p]
|
||
|
|
||
|
if p == Point(0, 0) or p == self.target:
|
||
|
self.erosion[p] = 0
|
||
|
elif p.y == 0:
|
||
|
self.erosion[p] = p.x * 16807
|
||
|
elif p.x == 0:
|
||
|
self.erosion[p] = p.y * 48271
|
||
|
else:
|
||
|
self.erosion[p] = self.erosion_at(Point(p.x - 1, p.y)) * self.erosion_at(
|
||
|
Point(p.x, p.y - 1)
|
||
|
)
|
||
|
# Go from geologic index to erosion level
|
||
|
self.erosion[p] += self.depth
|
||
|
self.erosion[p] %= 20183
|
||
|
return self.erosion[p]
|
||
|
|
||
|
def region_at(self, p: Point) -> Region:
|
||
|
return Region(self.erosion_at(p) % 3)
|
||
|
|
||
|
|
||
|
class Gear(enum.IntEnum):
|
||
|
NEITHER = 0
|
||
|
TORCH = 1
|
||
|
CLIMBING = 2
|
||
|
|
||
|
|
||
|
class Explorer(NamedTuple):
|
||
|
pos: Point
|
||
|
gear: Gear
|
||
|
|
||
|
|
||
|
def solve(input: str) -> int:
|
||
|
def parse(input: list[str]) -> tuple[int, Point]:
|
||
|
depth = input[0].removeprefix("depth: ")
|
||
|
target = input[1].removeprefix("target: ")
|
||
|
return int(depth), Point(*(int(n) for n in target.split(",")))
|
||
|
|
||
|
def next_state(explorer: Explorer, cave: Cave) -> Iterator[tuple[int, Explorer]]:
|
||
|
for n in explorer.pos.neighbours():
|
||
|
if n.x < 0 or n.y < 0:
|
||
|
continue
|
||
|
region = cave.region_at(n)
|
||
|
if region == Region.ROCKY:
|
||
|
for gear in (Gear.CLIMBING, Gear.TORCH):
|
||
|
yield 1 + (7 if gear != explorer.gear else 0), Explorer(n, gear)
|
||
|
if region == Region.WET:
|
||
|
for gear in (Gear.CLIMBING, Gear.NEITHER):
|
||
|
yield 1 + (7 if gear != explorer.gear else 0), Explorer(n, gear)
|
||
|
if region == Region.NARROW:
|
||
|
for gear in (Gear.TORCH, Gear.NEITHER):
|
||
|
yield 1 + (7 if gear != explorer.gear else 0), Explorer(n, gear)
|
||
|
|
||
|
def djikstra(start: Explorer, end: Explorer, cave: Cave) -> int:
|
||
|
# Priority queue of (distance, point)
|
||
|
queue = [(0, start)]
|
||
|
seen: set[Explorer] = set()
|
||
|
|
||
|
while len(queue) > 0:
|
||
|
cost, explorer = heapq.heappop(queue)
|
||
|
if explorer == end:
|
||
|
return cost
|
||
|
# We must have seen p with a smaller distance before
|
||
|
if explorer in seen:
|
||
|
continue
|
||
|
# First time encountering p, must be the smallest distance to it
|
||
|
seen.add(explorer)
|
||
|
# Add all neighbours to be visited
|
||
|
for time, n in next_state(explorer, cave):
|
||
|
heapq.heappush(queue, (cost + time, n))
|
||
|
|
||
|
assert False # Sanity check
|
||
|
|
||
|
depth, target = parse(input.splitlines())
|
||
|
cave = Cave(depth, target)
|
||
|
start = Explorer(Point(0, 0), Gear.TORCH)
|
||
|
end = Explorer(target, Gear.TORCH)
|
||
|
return djikstra(start, end, cave)
|
||
|
|
||
|
|
||
|
def main() -> None:
|
||
|
input = sys.stdin.read()
|
||
|
print(solve(input))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|