use crate::{ fen::{FenError, FromFen}, movegen, }; use super::{Bitboard, CastleRights, Color, File, Move, Piece, Rank, Square}; mod builder; pub use builder::*; mod error; pub use error::*; /// Represent an on-going chess game. #[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)] pub struct ChessBoard { /// A [Bitboard] of occupancy for each piece type, discarding color. Indexed by [Piece::index]. piece_occupancy: [Bitboard; Piece::NUM_VARIANTS], /// A [Bitboard] of occupancy for each color, discarding piece type. Indexed by [Piece::index]. color_occupancy: [Bitboard; Color::NUM_VARIANTS], /// A [Bitboard] representing all squares currently occupied by a piece. combined_occupancy: Bitboard, /// The allowed [CastleRights] for either color. Indexed by [Color::index]. castle_rights: [CastleRights; Color::NUM_VARIANTS], /// A potential en-passant attack. /// Either `None` if no double-step pawn move was made in the previous half-turn, or /// `Some(target_square)` if a double-step move was made. en_passant: Option, /// The number of half-turns without either a pawn push or capture. half_move_clock: u8, // Should never go higher than 50. /// The number of half-turns so far. total_plies: u32, // Should be plenty. /// The current player turn. side: Color, } /// The state which can't be reversed when doing/un-doing a [Move]. #[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)] pub struct NonReversibleState { castle_rights: [CastleRights; Color::NUM_VARIANTS], en_passant: Option, half_move_clock: u8, // Should never go higher than 50. } impl ChessBoard { /// Which player's turn is it. #[inline(always)] pub fn current_player(&self) -> Color { self.side } /// Return the [Square] currently occupied by a pawn that can be captured en-passant, or `None` #[inline(always)] pub fn en_passant(&self) -> Option { self.en_passant } /// Return the [CastleRights] for the given [Color]. #[inline(always)] pub fn castle_rights(&self, color: Color) -> CastleRights { self.castle_rights[color.index()] } /// Return the [CastleRights] for the given [Color]. Allow mutations. #[inline(always)] fn castle_rights_mut(&mut self, color: Color) -> &mut CastleRights { &mut self.castle_rights[color.index()] } /// Get the [Bitboard] representing all pieces of the given [Piece] and [Color] type. #[inline(always)] pub fn occupancy(&self, piece: Piece, color: Color) -> Bitboard { self.piece_occupancy(piece) & self.color_occupancy(color) } /// Get the [Bitboard] representing all pieces of the given [Piece] type, discarding color. #[inline(always)] pub fn piece_occupancy(&self, piece: Piece) -> Bitboard { self.piece_occupancy[piece.index()] } /// Get the [Bitboard] representing all pieces of the given [Piece] type, discarding color. /// Allow mutating the state. #[inline(always)] fn piece_occupancy_mut(&mut self, piece: Piece) -> &mut Bitboard { &mut self.piece_occupancy[piece.index()] } /// Get the [Bitboard] representing all colors of the given [Color] type, discarding piece /// type. #[inline(always)] pub fn color_occupancy(&self, color: Color) -> Bitboard { self.color_occupancy[color.index()] } /// Get the [Bitboard] representing all colors of the given [Color] type, discarding piece /// type. Allow mutating the state. #[inline(always)] fn color_occupancy_mut(&mut self, color: Color) -> &mut Bitboard { &mut self.color_occupancy[color.index()] } /// Get the [Bitboard] representing all pieces on the board. #[inline(always)] pub fn combined_occupancy(&self) -> Bitboard { self.combined_occupancy } /// Return the number of half-turns without either a pawn push or a capture. #[inline(always)] pub fn half_move_clock(&self) -> u8 { self.half_move_clock } /// Return the total number of plies (i.e: half-turns) played so far. #[inline(always)] pub fn total_plies(&self) -> u32 { self.total_plies } /// Return the [Bitboard] corresponding to all the opponent's pieces threatening the current /// player's king. #[inline(always)] pub fn checkers(&self) -> Bitboard { self.compute_checkers(self.current_player()) } /// Quickly do and undo a move on the [Bitboard]s that are part of the [ChessBoard] state. Does /// not account for all non-revertible changes such as en-passant state or half-move clock. #[inline(always)] fn xor(&mut self, color: Color, piece: Piece, start_end: Bitboard) { *self.piece_occupancy_mut(piece) ^= start_end; *self.color_occupancy_mut(color) ^= start_end; self.combined_occupancy ^= start_end; } /// Play the given [Move], returning all non-revertible state (e.g: en-passant, etc...). #[inline(always)] pub fn do_move(&mut self, chess_move: Move) -> NonReversibleState { // Save non-revertible state let state = NonReversibleState { castle_rights: self.castle_rights, en_passant: self.en_passant, half_move_clock: self.half_move_clock, }; // Non-revertible state modification if chess_move.capture().is_some() || chess_move.piece() == Piece::Pawn { self.half_move_clock = 0; } else { self.half_move_clock += 1; } if chess_move.is_double_step() { let target_square = Square::new( chess_move.destination().file(), self.current_player().third_rank(), ); self.en_passant = Some(target_square); } else { self.en_passant = None; } if chess_move.is_castling() || chess_move.piece() == Piece::King { *self.castle_rights_mut(self.current_player()) = CastleRights::NoSide; } if chess_move.piece() == Piece::Rook { let castle_rights = self.castle_rights_mut(self.current_player()); *castle_rights = match chess_move.start().file() { File::A => castle_rights.without_queen_side(), File::H => castle_rights.without_king_side(), _ => *castle_rights, } } // Revertible state modification self.xor( self.current_player(), chess_move.piece(), chess_move.start() | chess_move.destination(), ); self.total_plies += 1; self.side = !self.side; state } /// Reverse the effect of playing the given [Move], and return to the given /// [NonReversibleState]. #[inline(always)] pub fn undo_move(&mut self, chess_move: Move, previous: NonReversibleState) { // Restore non-revertible state self.castle_rights = previous.castle_rights; self.en_passant = previous.en_passant; self.half_move_clock = previous.half_move_clock; // Restore revertible state self.xor( // The move was applied at the turn *before* the current player !self.current_player(), chess_move.piece(), chess_move.start() | chess_move.destination(), ); self.total_plies -= 1; self.side = !self.side; } /// Return true if the current state of the board looks valid, false if something is definitely /// wrong. pub fn is_valid(&self) -> bool { self.validate().is_ok() } /// Validate the state of the board. Return Err([InvalidError]) if an issue is found. pub fn validate(&self) -> Result<(), InvalidError> { // Don't overlap pieces. for piece in Piece::iter() { #[allow(clippy::collapsible_if)] for other in Piece::iter() { if piece != other { if !(self.piece_occupancy(piece) & self.piece_occupancy(other)).is_empty() { return Err(InvalidError::OverlappingPieces); } } } } // Don't overlap colors. if !(self.color_occupancy(Color::White) & self.color_occupancy(Color::Black)).is_empty() { return Err(InvalidError::OverlappingColors); } // Calculate the union of all pieces. let combined = Piece::iter().fold(Bitboard::EMPTY, |board, p| board | self.piece_occupancy(p)); // Ensure that the pre-computed version is accurate. if combined != self.combined_occupancy() { return Err(InvalidError::ErroneousCombinedOccupancy); } // Ensure that all pieces belong to a color, and no color has pieces that don't exist. if combined != (self.color_occupancy(Color::White) | self.color_occupancy(Color::Black)) { return Err(InvalidError::ErroneousCombinedOccupancy); } for color in Color::iter() { for piece in Piece::iter() { // Check that we have the expected number of piecese. let count = self.occupancy(piece, color).count(); let possible = match piece { Piece::King => count <= 1, Piece::Pawn => count <= 8, Piece::Queen => count <= 9, _ => count <= 10, }; if !possible { return Err(InvalidError::TooManyPieces); } } // Check that we have a king if self.occupancy(Piece::King, color).count() != 1 { return Err(InvalidError::MissingKing); } // Check that don't have too many pieces in total if self.color_occupancy(color).count() > 16 { return Err(InvalidError::TooManyPieces); } } // Check that pawns aren't in first/last rank. if !(self.piece_occupancy(Piece::Pawn) & (Rank::First.into_bitboard() | Rank::Eighth.into_bitboard())) .is_empty() { return Err(InvalidError::InvalidPawnPosition); } // Verify that rooks and kings that are allowed to castle have not been moved. for color in Color::iter() { let castle_rights = self.castle_rights(color); // Nothing to check if there are no castlings allowed. if castle_rights == CastleRights::NoSide { continue; } let actual_rooks = self.occupancy(Piece::Rook, color); let expected_rooks = castle_rights.unmoved_rooks(color); // We must check the intersection, in case there are more than 2 rooks on the board. if (expected_rooks & actual_rooks) != expected_rooks { return Err(InvalidError::InvalidCastlingRights); } let actual_king = self.occupancy(Piece::King, color); let expected_king = Square::new(File::E, color.first_rank()); // We have checked that there is exactly one king, no need for intersecting the sets. if actual_king != expected_king.into_bitboard() { return Err(InvalidError::InvalidCastlingRights); } } // The current en-passant target square must be empty, right behind an opponent's pawn. if let Some(square) = self.en_passant() { if !(self.combined_occupancy() & square).is_empty() { return Err(InvalidError::InvalidEnPassant); } let opponent_pawns = self.occupancy(Piece::Pawn, !self.current_player()); let double_pushed_pawn = self .current_player() .backward_direction() .move_board(square.into_bitboard()); if (opponent_pawns & double_pushed_pawn).is_empty() { return Err(InvalidError::InvalidEnPassant); } } // Check that kings don't touch each other. let white_king = self.occupancy(Piece::King, Color::White); let black_king = self.occupancy(Piece::King, Color::Black); // Unwrap is fine, we already checked that there is exactly one king of each color if !(movegen::king_moves(white_king.try_into().unwrap()) & black_king).is_empty() { return Err(InvalidError::NeighbouringKings); } // Check that the opponent is not currently in check. if !self.compute_checkers(!self.current_player()).is_empty() { return Err(InvalidError::OpponentInCheck); } Ok(()) } /// Compute all pieces that are currently threatening the given [Color]'s king. fn compute_checkers(&self, color: Color) -> Bitboard { // Unwrap is fine, there should always be exactly one king per color let king = (self.occupancy(Piece::King, color)).try_into().unwrap(); let opponent = !color; // No need to remove our pieces from the generated moves, we just want to check if we // intersect with the opponent's pieces, rather than generate only valid moves. let bishops = { let queens = self.occupancy(Piece::Queen, opponent); let bishops = self.occupancy(Piece::Bishop, opponent); let bishop_attacks = movegen::bishop_moves(king, self.combined_occupancy()); (queens | bishops) & bishop_attacks }; let rooks = { let queens = self.occupancy(Piece::Queen, opponent); let rooks = self.occupancy(Piece::Rook, opponent); let rook_attacks = movegen::rook_moves(king, self.combined_occupancy()); (queens | rooks) & rook_attacks }; let knights = { let knights = self.occupancy(Piece::Knight, opponent); let knight_attacks = movegen::knight_moves(king); knights & knight_attacks }; let pawns = { let pawns = self.occupancy(Piece::Pawn, opponent); let pawn_attacks = movegen::pawn_attacks(color, king); pawns & pawn_attacks }; bishops | rooks | knights | pawns } } /// Use the starting position as a default value, corresponding to the /// "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1" FEN string impl Default for ChessBoard { fn default() -> Self { Self { piece_occupancy: [ // King Square::E1 | Square::E8, // Queen Square::D1 | Square::D8, // Rook Square::A1 | Square::A8 | Square::H1 | Square::H8, // Bishop Square::C1 | Square::C8 | Square::F1 | Square::F8, // Knight Square::B1 | Square::B8 | Square::G1 | Square::G8, // Pawn Rank::Second.into_bitboard() | Rank::Seventh.into_bitboard(), ], color_occupancy: [ Rank::First.into_bitboard() | Rank::Second.into_bitboard(), Rank::Seventh.into_bitboard() | Rank::Eighth.into_bitboard(), ], combined_occupancy: Rank::First.into_bitboard() | Rank::Second.into_bitboard() | Rank::Seventh.into_bitboard() | Rank::Eighth.into_bitboard(), castle_rights: [CastleRights::BothSides; 2], en_passant: None, half_move_clock: 0, total_plies: 0, side: Color::White, } } } /// Return a [ChessBoard] from the given FEN string. impl FromFen for ChessBoard { type Err = FenError; fn from_fen(s: &str) -> Result { let mut split = s.split_ascii_whitespace(); let piece_placement = split.next().ok_or(FenError::InvalidFen)?; let side_to_move = split.next().ok_or(FenError::InvalidFen)?; let castling_rights = split.next().ok_or(FenError::InvalidFen)?; let en_passant_square = split.next().ok_or(FenError::InvalidFen)?; let half_move_clock = split.next().ok_or(FenError::InvalidFen)?; let full_move_counter = split.next().ok_or(FenError::InvalidFen)?; let castle_rights = <[CastleRights; 2]>::from_fen(castling_rights)?; let side = Color::from_fen(side_to_move)?; let en_passant = Option::::from_fen(en_passant_square)?; let half_move_clock = half_move_clock .parse::() .map_err(|_| FenError::InvalidFen)?; let full_move_counter = full_move_counter .parse::() .map_err(|_| FenError::InvalidFen)?; let total_plies = (full_move_counter - 1) * 2 + if side == Color::White { 0 } else { 1 }; let (piece_occupancy, color_occupancy, combined_occupancy) = { let (mut pieces, mut colors, mut combined) = ([Bitboard::EMPTY; 6], [Bitboard::EMPTY; 2], Bitboard::EMPTY); let mut rank: usize = 8; for rank_str in piece_placement.split('/') { rank -= 1; let mut file: usize = 0; for c in rank_str.chars() { let color = if c.is_uppercase() { Color::White } else { Color::Black }; let piece = match c { digit @ '1'..='8' => { // Unwrap is fine since this arm is only matched by digits file += digit.to_digit(10).unwrap() as usize; continue; } _ => Piece::from_fen(&c.to_string())?, }; let (piece_board, color_board) = (&mut pieces[piece.index()], &mut colors[color.index()]); // Only need to worry about underflow since those are `usize` values. if file >= 8 || rank >= 8 { return Err(FenError::InvalidFen); }; let square = Square::new(File::from_index(file), Rank::from_index(rank)); *piece_board |= square; *color_board |= square; combined |= square; file += 1; } // We haven't read exactly 8 files. if file != 8 { return Err(FenError::InvalidFen); } } // We haven't read exactly 8 ranks if rank != 0 { return Err(FenError::InvalidFen); } (pieces, colors, combined) }; let res = Self { piece_occupancy, color_occupancy, combined_occupancy, castle_rights, en_passant, half_move_clock, total_plies, side, }; if let Err(err) = res.validate() { return Err(FenError::InvalidPosition(err)); } Ok(res) } } #[cfg(test)] mod test { use crate::board::MoveBuilder; use super::*; #[test] fn valid() { let default_position = ChessBoard::default(); assert!(default_position.is_valid()); } #[test] fn invalid_overlapping_pieces() { let position = ChessBoard { piece_occupancy: [ // King Square::E1 | Square::E8, // Queen Square::E1 | Square::E8, // Rook Bitboard::EMPTY, // Bishop Bitboard::EMPTY, // Knight Bitboard::EMPTY, // Pawn Bitboard::EMPTY, ], color_occupancy: [Square::E1.into_bitboard(), Square::E8.into_bitboard()], combined_occupancy: Square::E1 | Square::E8, castle_rights: [CastleRights::NoSide; 2], en_passant: None, half_move_clock: 0, total_plies: 0, side: Color::White, }; assert_eq!( position.validate().err().unwrap(), InvalidError::OverlappingPieces, ); } #[test] fn invalid_overlapping_colors() { let position = ChessBoard { piece_occupancy: [ // King Square::E1 | Square::E8, // Queen Bitboard::EMPTY, // Rook Bitboard::EMPTY, // Bishop Bitboard::EMPTY, // Knight Bitboard::EMPTY, // Pawn Bitboard::EMPTY, ], color_occupancy: [Square::E1 | Square::E8, Square::E1 | Square::E8], combined_occupancy: Square::E1 | Square::E8, castle_rights: [CastleRights::NoSide; 2], en_passant: None, half_move_clock: 0, total_plies: 0, side: Color::White, }; assert_eq!( position.validate().err().unwrap(), InvalidError::OverlappingColors, ); } #[test] fn invalid_combined_does_not_equal_pieces() { let position = ChessBoard { piece_occupancy: [ // King Square::E1 | Square::E8, // Queen Bitboard::EMPTY, // Rook Bitboard::EMPTY, // Bishop Bitboard::EMPTY, // Knight Bitboard::EMPTY, // Pawn Bitboard::EMPTY, ], color_occupancy: [Square::E1.into_bitboard(), Square::E8.into_bitboard()], combined_occupancy: Square::E1.into_bitboard(), castle_rights: [CastleRights::NoSide; 2], en_passant: None, half_move_clock: 0, total_plies: 0, side: Color::White, }; assert_eq!( position.validate().err().unwrap(), InvalidError::ErroneousCombinedOccupancy, ); } #[test] fn invalid_combined_does_not_equal_colors() { let position = ChessBoard { piece_occupancy: [ // King Square::E1 | Square::E8, // Queen Bitboard::EMPTY, // Rook Bitboard::EMPTY, // Bishop Bitboard::EMPTY, // Knight Bitboard::EMPTY, // Pawn Bitboard::EMPTY, ], color_occupancy: [Square::E1 | Square::H1, Square::E8 | Square::H8], combined_occupancy: Square::E1 | Square::E8, castle_rights: [CastleRights::NoSide; 2], en_passant: None, half_move_clock: 0, total_plies: 0, side: Color::White, }; assert_eq!( position.validate().err().unwrap(), InvalidError::ErroneousCombinedOccupancy, ); } #[test] fn invalid_multiple_kings() { let res = { let mut builder = ChessBoardBuilder::new(); builder[Square::E1] = Some((Piece::King, Color::White)); builder[Square::E2] = Some((Piece::King, Color::White)); builder[Square::E7] = Some((Piece::King, Color::Black)); builder[Square::E8] = Some((Piece::King, Color::Black)); TryInto::::try_into(builder) }; assert_eq!(res.err().unwrap(), InvalidError::TooManyPieces); } #[test] fn invalid_castling_rights_no_rooks() { let res = { let mut builder = ChessBoardBuilder::new(); builder[Square::E1] = Some((Piece::King, Color::White)); builder[Square::E8] = Some((Piece::King, Color::Black)); builder.with_castle_rights(CastleRights::BothSides, Color::White); TryInto::::try_into(builder) }; assert_eq!(res.err().unwrap(), InvalidError::InvalidCastlingRights); } #[test] fn invalid_castling_rights_moved_king() { let res = { let mut builder = ChessBoardBuilder::new(); builder[Square::E2] = Some((Piece::King, Color::White)); builder[Square::A1] = Some((Piece::Rook, Color::White)); builder[Square::H1] = Some((Piece::Rook, Color::White)); builder[Square::E7] = Some((Piece::King, Color::Black)); builder[Square::A8] = Some((Piece::Rook, Color::Black)); builder[Square::H8] = Some((Piece::Rook, Color::Black)); builder.with_castle_rights(CastleRights::BothSides, Color::White); TryInto::::try_into(builder) }; assert_eq!(res.err().unwrap(), InvalidError::InvalidCastlingRights); } #[test] fn invalid_kings_next_to_each_other() { let res = { let mut builder = ChessBoardBuilder::new(); builder[Square::E1] = Some((Piece::King, Color::White)); builder[Square::E2] = Some((Piece::King, Color::Black)); TryInto::::try_into(builder) }; assert_eq!(res.err().unwrap(), InvalidError::NeighbouringKings); } #[test] fn invalid_opponent_in_check() { let res = { let mut builder = ChessBoardBuilder::new(); builder[Square::E1] = Some((Piece::King, Color::White)); builder[Square::E7] = Some((Piece::Queen, Color::White)); builder[Square::E8] = Some((Piece::King, Color::Black)); TryInto::::try_into(builder) }; assert_eq!(res.err().unwrap(), InvalidError::OpponentInCheck); } #[test] fn invalid_pawn_on_first_rank() { let res = { let mut builder = ChessBoardBuilder::new(); builder[Square::H1] = Some((Piece::King, Color::White)); builder[Square::A1] = Some((Piece::Pawn, Color::White)); builder[Square::H8] = Some((Piece::King, Color::Black)); TryInto::::try_into(builder) }; assert_eq!(res.err().unwrap(), InvalidError::InvalidPawnPosition); } #[test] fn invalid_too_many_pieces() { let res = { let mut builder = ChessBoardBuilder::new(); builder[Square::H1] = Some((Piece::King, Color::White)); builder[Square::H8] = Some((Piece::King, Color::Black)); for square in (File::B.into_bitboard() | File::C.into_bitboard()).into_iter() { builder[square] = Some((Piece::Pawn, Color::White)); } for square in (File::F.into_bitboard() | File::G.into_bitboard()).into_iter() { builder[square] = Some((Piece::Pawn, Color::Black)); } TryInto::::try_into(builder) }; assert_eq!(res.err().unwrap(), InvalidError::TooManyPieces); } #[test] fn checkers() { let position = ChessBoard { piece_occupancy: [ // King Square::E2 | Square::E8, // Queen Square::E7 | Square::H2, // Rook Square::A2 | Square::E1, // Bishop Square::D3 | Square::F3, // Knight Square::C1 | Square::G1, // Pawn Bitboard::EMPTY, ], color_occupancy: [ Square::C1 | Square::D3 | Square::E1 | Square::E2 | Square::H2, Square::A2 | Square::E7 | Square::E8 | Square::F3 | Square::G1, ], combined_occupancy: Square::A2 | Square::C1 | Square::D3 | Square::E1 | Square::E2 | Square::E7 | Square::E8 | Square::F3 | Square::G1 | Square::H2, castle_rights: [CastleRights::NoSide; 2], en_passant: None, half_move_clock: 0, total_plies: 0, side: Color::White, }; assert_eq!( position.checkers(), Square::A2 | Square::E7 | Square::F3 | Square::G1 ); } #[test] fn fen_default_position() { let default_position = ChessBoard::default(); assert_eq!( ChessBoard::from_fen("rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1") .unwrap(), default_position ); } #[test] fn fen_en_passant() { // Start from default position let mut position = ChessBoard::default(); position.do_move( MoveBuilder { piece: Piece::Pawn, start: Square::E2, destination: Square::E4, capture: None, promotion: None, en_passant: false, double_step: true, castling: false, } .into(), ); assert_eq!( ChessBoard::from_fen("rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b KQkq e3 0 1") .unwrap(), position ); // And now c5 position.do_move( MoveBuilder { piece: Piece::Pawn, start: Square::C7, destination: Square::C5, capture: None, promotion: None, en_passant: false, double_step: true, castling: false, } .into(), ); assert_eq!( ChessBoard::from_fen("rnbqkbnr/pp1ppppp/8/2p5/4P3/8/PPPP1PPP/RNBQKBNR w KQkq c6 0 2") .unwrap(), position ); // Finally, Nf3 position.do_move( MoveBuilder { piece: Piece::Knight, start: Square::G1, destination: Square::F3, capture: None, promotion: None, en_passant: false, double_step: false, castling: false, } .into(), ); assert_eq!( ChessBoard::from_fen("rnbqkbnr/pp1ppppp/8/2p5/4P3/5N2/PPPP1PPP/RNBQKB1R b KQkq - 1 2 ") .unwrap(), position ); } #[test] fn do_move() { // Start from default position let mut position = ChessBoard::default(); // Modify it to account for e4 move position.do_move( MoveBuilder { piece: Piece::Pawn, start: Square::E2, destination: Square::E4, capture: None, promotion: None, en_passant: false, double_step: true, castling: false, } .into(), ); assert_eq!( position, ChessBoard::from_fen("rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b KQkq e3 0 1") .unwrap() ); // And now c5 position.do_move( MoveBuilder { piece: Piece::Pawn, start: Square::C7, destination: Square::C5, capture: None, promotion: None, en_passant: false, double_step: true, castling: false, } .into(), ); assert_eq!( position, ChessBoard::from_fen("rnbqkbnr/pp1ppppp/8/2p5/4P3/8/PPPP1PPP/RNBQKBNR w KQkq c6 0 2") .unwrap() ); // Finally, Nf3 position.do_move( MoveBuilder { piece: Piece::Knight, start: Square::G1, destination: Square::F3, capture: None, promotion: None, en_passant: false, double_step: false, castling: false, } .into(), ); assert_eq!( position, ChessBoard::from_fen("rnbqkbnr/pp1ppppp/8/2p5/4P3/5N2/PPPP1PPP/RNBQKB1R b KQkq - 1 2 ") .unwrap() ); } #[test] fn do_move_and_undo() { // Start from default position let mut position = ChessBoard::default(); // Modify it to account for e4 move let move_1 = MoveBuilder { piece: Piece::Pawn, start: Square::E2, destination: Square::E4, capture: None, promotion: None, en_passant: false, double_step: true, castling: false, } .into(); let state_1 = position.do_move(move_1); // And now c5 let move_2 = MoveBuilder { piece: Piece::Pawn, start: Square::C7, destination: Square::C5, capture: None, promotion: None, en_passant: false, double_step: true, castling: false, } .into(); let state_2 = position.do_move(move_2); // Finally, Nf3 let move_3 = MoveBuilder { piece: Piece::Knight, start: Square::G1, destination: Square::F3, capture: None, promotion: None, en_passant: false, double_step: false, castling: false, } .into(); let state_3 = position.do_move(move_3); // Now revert each move one-by-one position.undo_move(move_3, state_3); assert_eq!( position, ChessBoard::from_fen("rnbqkbnr/pp1ppppp/8/2p5/4P3/8/PPPP1PPP/RNBQKBNR w KQkq c6 0 2") .unwrap() ); position.undo_move(move_2, state_2); assert_eq!( position, ChessBoard::from_fen("rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b KQkq e3 0 1") .unwrap() ); position.undo_move(move_1, state_1); assert_eq!( position, ChessBoard::from_fen("rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1") .unwrap() ); } }