Compare commits
No commits in common. "fa2849bdbac4bbeac40afcd28ff9980db203511e" and "39a5827d74152927cd5feef1b857e87709915486" have entirely different histories.
fa2849bdba
...
39a5827d74
|
@ -5,18 +5,15 @@ draft: false # I don't care for draft mode, git has branches for that
|
|||
description: ""
|
||||
tags:
|
||||
- accounting
|
||||
- algorithms
|
||||
- c++
|
||||
- ci/cd
|
||||
- cli
|
||||
- data structures
|
||||
- design-pattern
|
||||
- docker
|
||||
- drone
|
||||
- git
|
||||
- hugo
|
||||
- nix
|
||||
- python
|
||||
- self-hosting
|
||||
- test
|
||||
categories:
|
||||
|
|
|
@ -1,154 +0,0 @@
|
|||
---
|
||||
title: "Union Find"
|
||||
date: 2024-06-24T21:07:49+01:00
|
||||
draft: false # I don't care for draft mode, git has branches for that
|
||||
description: "My favorite data structure"
|
||||
tags:
|
||||
- algorithms
|
||||
- data structures
|
||||
- python
|
||||
categories:
|
||||
- programming
|
||||
series:
|
||||
- Cool algorithms
|
||||
favorite: false
|
||||
disable_feed: false
|
||||
---
|
||||
|
||||
To kickoff the [series]({{< ref "/series/cool-algorithms/">}}) of posts about
|
||||
algorithms and data structures I find interesting, I will be talking about my
|
||||
favorite one: the [_Disjoint Set_][wiki]. Also known as the _Union-Find_ data
|
||||
structure, so named because of its two main operations: `ds.union(lhs, rhs)` and
|
||||
`ds.find(elem)`.
|
||||
|
||||
[wiki]: https://en.wikipedia.org/wiki/Disjoint-set_data_structure
|
||||
|
||||
<!--more-->
|
||||
|
||||
## What does it do?
|
||||
|
||||
The _Union-Find_ data structure allows one to store a collection of sets of
|
||||
elements, with operations for adding new sets, merging two sets into one, and
|
||||
finding the representative member of a set. Not only does it do all that, but it
|
||||
does it in almost constant (amortized) time!
|
||||
|
||||
Here is a small motivating example for using the _Disjoint Set_ data structure:
|
||||
|
||||
```python
|
||||
def connected_components(graph: Graph) -> list[set[Node]]:
|
||||
# Initialize the disjoint set so that each node is in its own set
|
||||
ds: DisjointSet[Node] = DisjointSet(graph.nodes)
|
||||
# Each edge is a connection, merge both sides into the same set
|
||||
for (start, dest) in graph.edges:
|
||||
ds.union(start, dest)
|
||||
# Connected components share the same (arbitrary) root
|
||||
components: dict[Node, set[Node]] = defaultdict(set)
|
||||
for n in graph.nodes:
|
||||
components[ds.find(n)].add(n)
|
||||
# Return a list of disjoint sets corresponding to each connected component
|
||||
return list(components.values())
|
||||
```
|
||||
|
||||
## Implementation
|
||||
|
||||
I will show how to implement `UnionFind` for integers, though it can easily be
|
||||
extended to be used with arbitrary types (e.g: by mapping each element
|
||||
one-to-one to a distinct integer, or using a different set representation).
|
||||
|
||||
### Representation
|
||||
|
||||
Creating a new disjoint set is easy enough:
|
||||
|
||||
```python
|
||||
class UnionFind:
|
||||
_parent: list[int]
|
||||
_rank: list[int]
|
||||
|
||||
def __init__(self, size: int):
|
||||
# Each node is in its own set, making it its own parent...
|
||||
self._parents = list(range(size))
|
||||
# ... And its rank 0
|
||||
self._rank = [0] * size
|
||||
```
|
||||
|
||||
We represent each set through the `_parent` field: each element of the set is
|
||||
linked to its parent, until the root node which is its own parent. When first
|
||||
initializing the structure, each element is in its own set, so we initialize
|
||||
each element to be a root and make it its own parent (`_parent[i] == i` for all
|
||||
`i`).
|
||||
|
||||
The `_rank` field is an optimization which we will touch on in a later section.
|
||||
|
||||
### Find
|
||||
|
||||
A naive Implementation of `find(...)` is simple enough to write:
|
||||
|
||||
```python
|
||||
def find(self, elem: int) -> int:
|
||||
# If `elem` is its own parent, then it is the root of the tree
|
||||
if (parent: = self._parent[elem]) == elem:
|
||||
return elem
|
||||
# Otherwise, recurse on the parent
|
||||
return self.find(parent)
|
||||
```
|
||||
|
||||
However, going back up the chain of parents each time we want to find the root
|
||||
node (an `O(n)` operation) would make for disastrous performance. Instead we can
|
||||
do a small optimization called _path splitting.
|
||||
|
||||
```python
|
||||
def find(self, elem: int) -> int:
|
||||
while (parent: = self._parent[elem]) != elem:
|
||||
# Replace each parent link by a link to the grand-parent
|
||||
elem, self._parent[elem] = parent, self._parent[parent]
|
||||
return elem
|
||||
```
|
||||
|
||||
This flattens the links so that each node links directly to the root, making
|
||||
each subsequent `find(...)` constant time.
|
||||
|
||||
Other compression schemes exist, along the spectrum between faster shortening
|
||||
the chain faster earlier, or updating `_parent` fewer times per `find(...)`.
|
||||
|
||||
### Union
|
||||
|
||||
A naive implementation of `union(...)` is simple enough to write:
|
||||
|
||||
```python
|
||||
def union(self, lhs: int, rhs: int) -> int:
|
||||
# Replace both element by their root parent
|
||||
lhs = self.find(lhs)
|
||||
rhs = self.find(rhs)
|
||||
# arbitrarily merge one into the other
|
||||
self._parent[rhs] = lhs
|
||||
# Return the new root
|
||||
return lhs
|
||||
```
|
||||
|
||||
Once again, improvements can be made. Depending on the order in which we call
|
||||
`union(...)`, we might end up creating a long chain from the leaf of the tree to
|
||||
the root node, leading to slower `find(...)` operations. If at all possible, we
|
||||
would like to keep the trees as shallow as possible.
|
||||
|
||||
To do so, we want to avoid merging taller trees into smaller ones, so as to keep
|
||||
them as balanced as possible. Since a higher tree will result in a slower
|
||||
`find(...)`, keeping the trees balanced will lead to increased performance.
|
||||
|
||||
This is where the `_rank` field we mentioned earlier comes in: the _rank_ of an
|
||||
element is an upper bound on its height in the tree. By keeping track of this
|
||||
_approximate_ height, we can keep the trees balanced when merging them.
|
||||
|
||||
```python
|
||||
def union(self, lhs: int, rhs: int) -> int:
|
||||
lhs = self.find(lhs)
|
||||
rhs = self.find(rhs)
|
||||
# Always keep `lhs` as the taller tree
|
||||
if (self._rank[lhs] < self._rank[rhs])
|
||||
lhs, rhs = rhs, lhs
|
||||
# Merge the smaller tree into the taller one
|
||||
self._parent[rhs] = lhs
|
||||
# Update the rank when merging trees of approximately the same size
|
||||
if self._rank[lhs] == self._rank[rhs]:
|
||||
self._rank[lhs] += 1
|
||||
return lhs
|
||||
```
|
Loading…
Reference in a new issue