Compare commits
6 commits
aaf36e3237
...
566e4e746e
Author | SHA1 | Date | |
---|---|---|---|
Bruno BELANYI | 566e4e746e | ||
Bruno BELANYI | 5d6a9d4ec2 | ||
Bruno BELANYI | d9c687b0c9 | ||
Bruno BELANYI | 5bf41bdf87 | ||
Bruno BELANYI | 92d19581a6 | ||
Bruno BELANYI | 03794d191d |
|
@ -5,15 +5,18 @@ draft: false # I don't care for draft mode, git has branches for that
|
||||||
description: ""
|
description: ""
|
||||||
tags:
|
tags:
|
||||||
- accounting
|
- accounting
|
||||||
|
- algorithms
|
||||||
- c++
|
- c++
|
||||||
- ci/cd
|
- ci/cd
|
||||||
- cli
|
- cli
|
||||||
|
- data structures
|
||||||
- design-pattern
|
- design-pattern
|
||||||
- docker
|
- docker
|
||||||
- drone
|
- drone
|
||||||
- git
|
- git
|
||||||
- hugo
|
- hugo
|
||||||
- nix
|
- nix
|
||||||
|
- python
|
||||||
- self-hosting
|
- self-hosting
|
||||||
- test
|
- test
|
||||||
categories:
|
categories:
|
||||||
|
|
154
content/posts/2024-06-24-union-find/index.md
Normal file
154
content/posts/2024-06-24-union-find/index.md
Normal file
|
@ -0,0 +1,154 @@
|
||||||
|
---
|
||||||
|
title: "Union Find"
|
||||||
|
date: 2024-06-24T21:07:49+01:00
|
||||||
|
draft: false # I don't care for draft mode, git has branches for that
|
||||||
|
description: "My favorite data structure"
|
||||||
|
tags:
|
||||||
|
- algorithms
|
||||||
|
- data structures
|
||||||
|
- python
|
||||||
|
categories:
|
||||||
|
- programming
|
||||||
|
series:
|
||||||
|
- Lesser known algorithms and data structures
|
||||||
|
favorite: false
|
||||||
|
disable_feed: false
|
||||||
|
---
|
||||||
|
|
||||||
|
To kickoff the [series] of posts about criminally underrated algorithms and data
|
||||||
|
structures, I will be talking about my favorite one: the [_Disjoint Set_][wiki].
|
||||||
|
Also known as the _Union-Find_ data structure, so named because of its two main
|
||||||
|
operations: `ds.union(lhs, rhs)` and `ds.find(elem)`.
|
||||||
|
|
||||||
|
[wiki]: https://en.wikipedia.org/wiki/Disjoint-set_data_structure
|
||||||
|
[series]: {{< ref "/series/lesser-known-algorithms-and-data-structures/">}}
|
||||||
|
|
||||||
|
<!--more-->
|
||||||
|
|
||||||
|
## What does it do?
|
||||||
|
|
||||||
|
The _Union-Find_ data structure allows one to store a collection of sets of
|
||||||
|
elements, with operations for adding new sets, merging two sets into one, and
|
||||||
|
finding the representative member of a set. Not only does it do all that, but it
|
||||||
|
does it in almost constant (amortized) time!
|
||||||
|
|
||||||
|
Here is a small motivating example for using the _Disjoint Set_ data structure:
|
||||||
|
|
||||||
|
```python
|
||||||
|
def connected_components(graph: Graph) -> list[set[Node]]:
|
||||||
|
# Initialize the disjoint set so that each node is in its own set
|
||||||
|
ds: DisjointSet[Node] = DisjointSet(graph.nodes)
|
||||||
|
# Each edge is a connection, merge both sides into the same set
|
||||||
|
for (start, dest) in graph.edges:
|
||||||
|
ds.union(start, dest)
|
||||||
|
# Connected components share the same (arbitrary) root
|
||||||
|
components: dict[Node, set[Node]] = defaultdict(set)
|
||||||
|
for n in graph.nodes:
|
||||||
|
components[ds.find(n)].add(n)
|
||||||
|
# Return a list of disjoint sets corresponding to each connected component
|
||||||
|
return list(components.values())
|
||||||
|
```
|
||||||
|
|
||||||
|
## Implementation
|
||||||
|
|
||||||
|
I will show how to implement `UnionFind` for integers, though it can easily be
|
||||||
|
extended to be used with arbitrary types (e.g: by mapping each element
|
||||||
|
one-to-one to a distinct integer, or using a different set representation).
|
||||||
|
|
||||||
|
### Representation
|
||||||
|
|
||||||
|
Creating a new disjoint set is easy enough:
|
||||||
|
|
||||||
|
```python
|
||||||
|
class UnionFind:
|
||||||
|
_parent: list[int]
|
||||||
|
_rank: list[int]
|
||||||
|
|
||||||
|
def __init__(self, size: int):
|
||||||
|
# Each node is in its own set, making it its own parent...
|
||||||
|
self._parents = list(range(size))
|
||||||
|
# ... And its rank 0
|
||||||
|
self._rank = [0] * size
|
||||||
|
```
|
||||||
|
|
||||||
|
We represent each set through the `_parent` field: each element of the set is
|
||||||
|
linked to its parent, until the root node which is its own parent. When first
|
||||||
|
initializing the structure, each element is in its own set, so we initialize
|
||||||
|
each element to be a root and make it its own parent (`_parent[i] == i` for all
|
||||||
|
`i`).
|
||||||
|
|
||||||
|
The `_rank` field is an optimization which we will touch on in a later section.
|
||||||
|
|
||||||
|
### Find
|
||||||
|
|
||||||
|
A naive Implementation of `find(...)` is simple enough to write:
|
||||||
|
|
||||||
|
```python
|
||||||
|
def find(self, elem: int) -> int:
|
||||||
|
# If `elem` is its own parent, then it is the root of the tree
|
||||||
|
if (parent: = self._parent[elem]) == elem:
|
||||||
|
return elem
|
||||||
|
# Otherwise, recurse on the parent
|
||||||
|
return self.find(parent)
|
||||||
|
```
|
||||||
|
|
||||||
|
However, going back up the chain of parents each time we want to find the root
|
||||||
|
node (an `O(n)` operation) would make for disastrous performance. Instead we can
|
||||||
|
do a small optimization called _path splitting.
|
||||||
|
|
||||||
|
```python
|
||||||
|
def find(self, elem: int) -> int:
|
||||||
|
while (parent: = self._parent[elem]) != elem:
|
||||||
|
# Replace each parent link by a link to the grand-parent
|
||||||
|
elem, self._parent[elem] = parent, self._parent[parent]
|
||||||
|
return elem
|
||||||
|
```
|
||||||
|
|
||||||
|
This flattens the links so that each node links directly to the root, making
|
||||||
|
each subsequent `find(...)` constant time.
|
||||||
|
|
||||||
|
Other compression schemes exist, along the spectrum between faster shortening
|
||||||
|
the chain faster earlier, or updating `_parent` fewer times per `find(...)`.
|
||||||
|
|
||||||
|
### Union
|
||||||
|
|
||||||
|
A naive implementation of `union(...)` is simple enough to write:
|
||||||
|
|
||||||
|
```python
|
||||||
|
def union(self, lhs: int, rhs: int) -> int:
|
||||||
|
# Replace both element by their root parent
|
||||||
|
lhs = self.find(lhs)
|
||||||
|
rhs = self.find(rhs)
|
||||||
|
# arbitrarily merge one into the other
|
||||||
|
self._parent[rhs] = lhs
|
||||||
|
# Return the new root
|
||||||
|
return lhs
|
||||||
|
```
|
||||||
|
|
||||||
|
Once again, improvements can be made. Depending on the order in which we call
|
||||||
|
`union(...)`, we might end up creating a long chain from the leaf of the tree to
|
||||||
|
the root node, leading to slower `find(...)` operations. If at all possible, we
|
||||||
|
would like to keep the trees as shallow as possible.
|
||||||
|
|
||||||
|
To do so, we want to avoid merging taller trees into smaller ones, so as to keep
|
||||||
|
them as balanced as possible. Since a higher tree will result in a slower
|
||||||
|
`find(...)`, keeping the trees balanced will lead to increased performance.
|
||||||
|
|
||||||
|
This is where the `_rank` field we mentioned earlier comes in: the _rank_ of an
|
||||||
|
element is an upper bound on its height in the tree. By keeping track of this
|
||||||
|
_approximate_ height, we can keep the trees balanced when merging them.
|
||||||
|
|
||||||
|
```python
|
||||||
|
def union(self, lhs: int, rhs: int) -> int:
|
||||||
|
lhs = self.find(lhs)
|
||||||
|
rhs = self.find(rhs)
|
||||||
|
# Always keep `lhs` as the taller tree
|
||||||
|
if (self._rank[lhs] < self._rank[rhs])
|
||||||
|
lhs, rhs = rhs, lhs
|
||||||
|
# Merge the smaller tree into the taller one
|
||||||
|
self._parent[rhs] = lhs
|
||||||
|
# Update the rank when merging trees of approximately the same size
|
||||||
|
if self._rank[lhs] == self._rank[rhs]:
|
||||||
|
self._rank[lhs] += 1
|
||||||
|
return lhs
|
||||||
|
```
|
Loading…
Reference in a new issue