Compare commits
No commits in common. "827e1b2be62051f3220e4b56eddaa2a7b06fd60b" and "588d2b3f216048cb9a8f1d12de0712094a5460d2" have entirely different histories.
827e1b2be6
...
588d2b3f21
|
@ -1,296 +0,0 @@
|
||||||
---
|
|
||||||
title: "Multiple Dispatch in C++"
|
|
||||||
date: 2022-06-07T16:13:56+02:00
|
|
||||||
draft: false # I don't care for draft mode, git has branches for that
|
|
||||||
description: "A Lisp super-power in C++"
|
|
||||||
tags:
|
|
||||||
- c++
|
|
||||||
- design-pattern
|
|
||||||
categories:
|
|
||||||
- programming
|
|
||||||
series:
|
|
||||||
favorite: false
|
|
||||||
disable_feed: false
|
|
||||||
---
|
|
||||||
|
|
||||||
A great feature that can be used in more dynamic languages is *multiple
|
|
||||||
dispatch*. Here's an example in [Julia][julia-lang] taken from the [Wikipedia
|
|
||||||
article][wiki-multiple-dispatch].
|
|
||||||
|
|
||||||
```julia
|
|
||||||
abstract type SpaceObject end
|
|
||||||
|
|
||||||
struct Asteroid <: SpaceObject
|
|
||||||
# Asteroid fields
|
|
||||||
end
|
|
||||||
struct Spaceship <: SpaceObject
|
|
||||||
# Spaceship fields
|
|
||||||
end
|
|
||||||
|
|
||||||
collide_with(::Asteroid, ::Spaceship) = # Asteroid/Spaceship collision
|
|
||||||
collide_with(::Spaceship, ::Asteroid) = # Spaceship/Asteroid collision
|
|
||||||
collide_with(::Spaceship, ::Spaceship) = # Spaceship/Spaceship collision
|
|
||||||
collide_with(::Asteroid, ::Asteroid) = # Asteroid/Asteroid collision
|
|
||||||
|
|
||||||
collide(x::SpaceObject, y::SpaceObject) = collide_with(x, y)
|
|
||||||
```
|
|
||||||
|
|
||||||
The `collide` function calls `collide_with` which, at runtime, will inspect the
|
|
||||||
types of its arguments and *dispatch* to the appropriate implementation.
|
|
||||||
|
|
||||||
Julia was created with multiple dispatch as a first-class citizen, it is used
|
|
||||||
liberally in its ecosystem. C++ does not have access to such a feature natively,
|
|
||||||
but there are alternatives that I will be presenting in this article, and try to
|
|
||||||
justify there uses and limitations.
|
|
||||||
|
|
||||||
[julia-lang]: https://julialang.org/
|
|
||||||
[wiki-multiple-dispatch]: https://en.wikipedia.org/wiki/Multiple_dispatch
|
|
||||||
<!--more-->
|
|
||||||
|
|
||||||
## Single dispatch
|
|
||||||
|
|
||||||
The native way to perform dynamic dispatch in C++ is through the
|
|
||||||
use of *virtual methods*, which allows an object to *override* the behaviour of
|
|
||||||
one of its super-classes' method.
|
|
||||||
|
|
||||||
Invoking a virtual method will perform *single dispatch*, on the dynamic type
|
|
||||||
of the object who's method is being called.
|
|
||||||
|
|
||||||
Here is an example:
|
|
||||||
|
|
||||||
```cpp
|
|
||||||
struct SpaceObject {
|
|
||||||
// Pure virtual method, which must be overridden by non-abstract sub-classes
|
|
||||||
virtual void impact() = 0;
|
|
||||||
};
|
|
||||||
|
|
||||||
struct Asteroid {
|
|
||||||
// Override the method for asteroid impacts
|
|
||||||
void impact() override {
|
|
||||||
std::cout << "Bang!\n";
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
struct Spaceship {
|
|
||||||
// Override the method for spaceship impacts
|
|
||||||
void impact() override {
|
|
||||||
std::cout << "Crash!\n";
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
int main() {
|
|
||||||
std::unique_ptr<SpaceObject> object = std::make_unique<Spaceship>();
|
|
||||||
object->impact(); // Prints "Crash!"
|
|
||||||
|
|
||||||
object = std::make_unique<Asteroid>();
|
|
||||||
object->impact(); // Prints "Bang!"
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
Virtual methods are great when you want to represent a common set of behaviour
|
|
||||||
(an *interface*), and be able to substitute various types with their specific
|
|
||||||
implementation.
|
|
||||||
|
|
||||||
For example, a dummy file-system interface might look like the following:
|
|
||||||
|
|
||||||
```cpp
|
|
||||||
struct Filesystem {
|
|
||||||
virtual void write(std::string_view filename, std::span<char> data) = 0;
|
|
||||||
virtual std::vector<char> read(std::string_view filename) = 0;
|
|
||||||
virtual void delete(std::string_view filename) = 0;
|
|
||||||
};
|
|
||||||
```
|
|
||||||
|
|
||||||
You can then write `PosixFilesystem` which makes use of the POSIX API and
|
|
||||||
interact with actual on-disk data, `MockFilesystem` which only works in-memory
|
|
||||||
and can be used for testing, etc...
|
|
||||||
|
|
||||||
## Double dispatch through the Visitor pattern
|
|
||||||
|
|
||||||
Sometimes single dispatch is not enough, such as in the collision example at the
|
|
||||||
beginning of this article. In cases where a computation depends on the dynamic
|
|
||||||
type of *two* of its values, we can make use of double-dispatch by leveraging
|
|
||||||
the Visitor design pattern. This is done by calling a virtual method on the
|
|
||||||
first value, which itself will call a virtual method on the second value.
|
|
||||||
|
|
||||||
Here's a commentated example:
|
|
||||||
|
|
||||||
```cpp
|
|
||||||
struct Asteroid;
|
|
||||||
struct Spaceship;
|
|
||||||
|
|
||||||
struct SpaceObject {
|
|
||||||
// Only used to kick-start the double-dispatch process
|
|
||||||
virtual void collide_with(SpaceObject& other) = 0;
|
|
||||||
|
|
||||||
// The actual dispatching methods
|
|
||||||
virtual void collide_with(Asteroid& other) = 0;
|
|
||||||
virtual void collide_with(Spaceship& other) = 0;
|
|
||||||
};
|
|
||||||
|
|
||||||
struct Asteroid {
|
|
||||||
void collide_with(SpaceObject& other) override {
|
|
||||||
// `*this` is an `Asteroid&` which kick-starts the double-dispatch
|
|
||||||
other.collide_with(*this);
|
|
||||||
};
|
|
||||||
|
|
||||||
void collide_with(Asteroid& other) override {
|
|
||||||
// Asteroid/Asteroid
|
|
||||||
};
|
|
||||||
void collide_with(Spaceship& other) override {
|
|
||||||
// Asteroid/Spaceship
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
struct Spaceship {
|
|
||||||
void collide_with(SpaceObject& other) override {
|
|
||||||
// `*this` is a `Spaceship&` which kick-starts the double-dispatch
|
|
||||||
other.collide_with(*this);
|
|
||||||
};
|
|
||||||
|
|
||||||
void collide_with(Asteroid& other) override {
|
|
||||||
// Spaceship/Asteroid
|
|
||||||
};
|
|
||||||
void collide_with(Spaceship& other) override {
|
|
||||||
// Spaceship/Spaceship
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
void collide(SpaceObject& first, SpaceObject& second) {
|
|
||||||
first.collide_with(second);
|
|
||||||
};
|
|
||||||
|
|
||||||
int main() {
|
|
||||||
auto asteroid = std::make_unique<Asteroid>();
|
|
||||||
auto spaceship = std::make_unique<Spaceship>();
|
|
||||||
|
|
||||||
collide(*asteroid, *spaceship);
|
|
||||||
// Calls in order:
|
|
||||||
// - Asteroid::collide_with(SpaceObject&)
|
|
||||||
// - Spaceship::collide_with(Asteroid&)
|
|
||||||
|
|
||||||
collide(*spaceship, *asteroid);
|
|
||||||
// Calls in order:
|
|
||||||
// - Spaceship::collide_with(SpaceObject&)
|
|
||||||
// - Asteroid::collide_with(Spaceship&)
|
|
||||||
|
|
||||||
asteroid->collide_with(*spaceship);
|
|
||||||
// Only calls Asteroid::collide_with(Spaceship&)
|
|
||||||
|
|
||||||
spaceship->collide_with(*asteroid);
|
|
||||||
// Only calls Spaceship::collide_with(Asteroid&)
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
Double dispatch is pattern is most commonly used with the *visitor pattern*, in
|
|
||||||
which a closed class hierarchy (the data) is separated from an open class
|
|
||||||
hierarchy (the algorithms acting on that data). This is especially useful in
|
|
||||||
e.g: compilers, where the AST class hierarchy represents the data *only*, and
|
|
||||||
all compiler stages and optimization passes are programmed by a series of
|
|
||||||
visitors.
|
|
||||||
|
|
||||||
One downside of this approach is that if you want to add `SpaceStation` as
|
|
||||||
a sub-class of `SpaceObject`, and handle its collisions with other
|
|
||||||
`SpaceObject`s, you need to:
|
|
||||||
|
|
||||||
* Implement all `collide_with` methods for this new class.
|
|
||||||
* Add a new virtual method `collide_with(SpaceStation&)` and implement it on
|
|
||||||
every sub-class.
|
|
||||||
|
|
||||||
This can be inconvenient if your class hierarchy changes often.
|
|
||||||
|
|
||||||
## Multiple dispatch on a closed class hierarchy
|
|
||||||
|
|
||||||
When even double dispatch is not enough, there is a way to do multiple dispatch
|
|
||||||
in standard C++, included in the STL since C++17. However unlike the previous
|
|
||||||
methods I showed, this one relies on using [`std::variant`][variant-cppref] and
|
|
||||||
[`std::visit`][visit-cppref].
|
|
||||||
|
|
||||||
[variant-cppref]: https://en.cppreference.com/w/cpp/utility/variant
|
|
||||||
[visit-cppref]: https://en.cppreference.com/w/cpp/utility/variant/visit
|
|
||||||
|
|
||||||
The limitation of `std::variant` is that you are limited to the types you can
|
|
||||||
select at *compile-time* for the values used during your dispatch operation.
|
|
||||||
You have a *closed* hierarchy of classes, which is the explicit list of types in
|
|
||||||
your `variant`.
|
|
||||||
|
|
||||||
Nonetheless, if you can live with that limitation, then you have a great amount
|
|
||||||
of power available to you. I have used `std::visit` in the past to mimic the
|
|
||||||
effect of pattern matching.
|
|
||||||
|
|
||||||
In this example, I re-create the double-dispatch from the previous section:
|
|
||||||
|
|
||||||
```cpp
|
|
||||||
// No need to inherit from a `SpaceObject` base class
|
|
||||||
struct Asteroid {};
|
|
||||||
struct Spaceship {};
|
|
||||||
|
|
||||||
// But the list of possible runtime *must* be enumerated at compile-time
|
|
||||||
using SpaceObject = std::variant<Asteroid, Spaceship>;
|
|
||||||
|
|
||||||
void collide(SpaceObject& first, SpaceObject& second) {
|
|
||||||
struct CollideDispatch {
|
|
||||||
void operator()(Asteroid& first, Asteroid& second) {
|
|
||||||
// Asteroid/Asteroid
|
|
||||||
}
|
|
||||||
void operator()(Asteroid& first, Spaceship& second) {
|
|
||||||
// Asteroid/Spaceship
|
|
||||||
}
|
|
||||||
void operator()(Spaceship& first, Asteroid& second) {
|
|
||||||
// Spaceship/Asteroid
|
|
||||||
}
|
|
||||||
void operator()(Spaceship& first, Spaceship& second) {
|
|
||||||
// Spaceship/Spaceship
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
std::visit(CollideDispatch(), first, second);
|
|
||||||
}
|
|
||||||
|
|
||||||
int main() {
|
|
||||||
SpaceObject asteroid = Asteroid();
|
|
||||||
SpaceObject spaceship = Spaceship();
|
|
||||||
|
|
||||||
collide(asteroid, spaceship);
|
|
||||||
// Calls CollideDispatch::operator()(Asteroid&, Spaceship&)
|
|
||||||
|
|
||||||
collide(spaceship, asteroid);
|
|
||||||
// Calls CollideDispatch::operator()(Spaceship&, Asteroid&)
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
Obviously, the issue with adding a new `SpaceStation` variant is once again
|
|
||||||
apparent in this implementation. You will get a compile error unless you handle
|
|
||||||
this new `SpaceStation` variant at every point you `visit` the `SpaceObject`s.
|
|
||||||
|
|
||||||
## The Expression Problem
|
|
||||||
|
|
||||||
One issue we have not been able to move past in these exemples is the
|
|
||||||
[Expression Problem][expression-problem]. In two words, this means that we can't
|
|
||||||
add a new data type (e.g: `SpaceStation`), or a new operation (e.g: `land_on`)
|
|
||||||
to our current code without re-compiling it.
|
|
||||||
|
|
||||||
[expression-problem]: https://en.wikipedia.org/wiki/Expression_problem
|
|
||||||
|
|
||||||
This is the downside I was pointing out in our previous sections:
|
|
||||||
|
|
||||||
* Data type extension: one can easily add a new `SpaceObject` child-class in the
|
|
||||||
OOP version, but needs to modify each implementation if we want to add a new
|
|
||||||
method to the `SpaceObject` interface to implement a new operation.
|
|
||||||
* Operation extension: one can easily create a new function when using the
|
|
||||||
`std::variant` based representation, as pattern-matching easily allows us to
|
|
||||||
only handle the kinds of values we are interested in. But adding new
|
|
||||||
`SpaceObject` variant means we need to modify and/or re-compile every
|
|
||||||
`std::visit` call to handle the new variant.
|
|
||||||
|
|
||||||
There is currently no (good) way in standard C++ to tackle the Expression
|
|
||||||
Problem. A paper ([Open Multi Methods for C++][N2216]) was written to propose
|
|
||||||
a new language feature to improve the situation. However it looks quite complex,
|
|
||||||
and never got followed up on for standardization.
|
|
||||||
|
|
||||||
[N2216]: https://open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2216.pdf
|
|
||||||
|
|
||||||
In the mean-time, one can find some libraries (like [`yomm2`][yomm2]) that
|
|
||||||
reduce the amount of boiler-plate needed to emulate this feature.
|
|
||||||
|
|
||||||
[yomm2]: https://github.com/jll63/yomm2
|
|
Loading…
Reference in a new issue