Compare commits
4 commits
7799ec70ac
...
c325d2948c
Author | SHA1 | Date | |
---|---|---|---|
Bruno BELANYI | c325d2948c | ||
Bruno BELANYI | 2c11d2f3cc | ||
Bruno BELANYI | 387f15686a | ||
Bruno BELANYI | 753b3c0f75 |
112
content/posts/2024-08-11-kd-tree-revisited/index.md
Normal file
112
content/posts/2024-08-11-kd-tree-revisited/index.md
Normal file
|
@ -0,0 +1,112 @@
|
|||
---
|
||||
title: "Kd Tree Revisited"
|
||||
date: 2024-08-17T14:20:22+01:00
|
||||
draft: false # I don't care for draft mode, git has branches for that
|
||||
description: "Simplifying the nearest neighbour search"
|
||||
tags:
|
||||
- algorithms
|
||||
- data structures
|
||||
- python
|
||||
categories:
|
||||
- programming
|
||||
series:
|
||||
- Cool algorithms
|
||||
favorite: false
|
||||
disable_feed: false
|
||||
---
|
||||
|
||||
After giving it a bit of thought, I've found a way to simplify the nearest
|
||||
neighbour search (i.e: the `closest` method) for the `KdTree` I implemented in
|
||||
[my previous post]({{< relref "../2024-08-10-kd-tree/index.md" >}}).
|
||||
|
||||
<!--more-->
|
||||
|
||||
## The improvement
|
||||
|
||||
That post implemented the nearest neighbour search by keeping track of the
|
||||
tree's boundaries (through `AABB`), and each of its sub-trees (through
|
||||
`AABB.split`), and testing for the early exit condition by computing the
|
||||
distance of the search's origin to each sub-tree's boundaries.
|
||||
|
||||
Instead of _explicitly_ keeping track of each sub-tree's boundaries, we can
|
||||
implicitly compute it when recursing down the tree.
|
||||
|
||||
To check for the distance between the queried point and the splitting plane of
|
||||
inner nodes: we simply need to project the origin onto that plane, thus giving
|
||||
us a minimal bound on the distance of the points stored on the other side.
|
||||
|
||||
This can be easily computed from the `axis` and `mid` values which are stored in
|
||||
the inner nodes: to project the node on the plane we simply replace its
|
||||
coordinate for this axis by `mid`.
|
||||
|
||||
## Simplified search
|
||||
|
||||
With that out of the way, let's now see how `closest` can be implemented without
|
||||
needing to track the tree's `AABB` at the root:
|
||||
|
||||
```python
|
||||
# Wrapper type for closest points, ordered by `distance`
|
||||
@dataclasses.dataclass(order=True)
|
||||
class ClosestPoint[T](NamedTuple):
|
||||
point: Point = field(compare=False)
|
||||
value: T = field(compare=False)
|
||||
distance: float
|
||||
|
||||
class KdTree[T]:
|
||||
def closest(self, point: Point, n: int = 1) -> list[ClosestPoint[T]]:
|
||||
assert n > 0
|
||||
res = MaxHeap()
|
||||
# Instead of passing an `AABB`, we give an initial projection point,
|
||||
# the query origin itself (since we haven't visited any split node yet)
|
||||
self._root.closest(point, res, n, point)
|
||||
return sorted(res)
|
||||
|
||||
class KdNode[T]:
|
||||
def closest(
|
||||
self,
|
||||
point: Point,
|
||||
out: MaxHeap[ClosestPoint[T]],
|
||||
n: int,
|
||||
projection: Point,
|
||||
) -> None:
|
||||
# Same implementation
|
||||
self.inner.closest(point, out, n, bounds)
|
||||
|
||||
class KdLeafNode[T]:
|
||||
def closest(
|
||||
self,
|
||||
point: Point,
|
||||
out: MaxHeap[ClosestPoint[T]],
|
||||
n: int,
|
||||
projection: Point,
|
||||
) -> None:
|
||||
# Same implementation
|
||||
for p, val in self.points.items():
|
||||
item = ClosestPoint(p, val, dist(p, point))
|
||||
if len(out) < n:
|
||||
out.push(item)
|
||||
elif out.peek().distance > item.distance:
|
||||
out.pushpop(item)
|
||||
|
||||
class KdSplitNode[T]:
|
||||
def closest(
|
||||
self,
|
||||
point: Point,
|
||||
out: list[ClosestPoint[T]],
|
||||
n: int,
|
||||
projection: Point,
|
||||
) -> None:
|
||||
index = self._index(point)
|
||||
self.children[index].closest(point, out, n, projection)
|
||||
# Project onto the splitting plane, for a minimum distance to its points
|
||||
projection = projection.replace(self.axis, self.mid)
|
||||
# If we're at capacity and can't possibly find any closer points, exit
|
||||
if len(out) == n and dist(point, projection) > out.peek().distance:
|
||||
return
|
||||
# Otherwise recurse on the other side to check for nearer neighbours
|
||||
self.children[1 - index].closest(point, out, n, projection)
|
||||
```
|
||||
|
||||
As you can see, the main difference is in `KdSplitNode`'s implementation, where
|
||||
we can quickly compute the minimum distance between the search's origin and all
|
||||
potential points in that subspace.
|
Loading…
Reference in a new issue