Compare commits

...

19 commits

Author SHA1 Message Date
Bruno BELANYI 189cdcf05a Add Bloom Filter post
All checks were successful
ci/woodpecker/push/deploy/2 Pipeline was successful
2024-07-20 14:16:47 +01:00
Bruno BELANYI de48eb9e94 Add Gap Buffer post 2024-07-20 14:16:47 +01:00
Bruno BELANYI 27152689ea posts: bloom-filter: add lookup 2024-07-20 14:16:47 +01:00
Bruno BELANYI 8e304ec8a9 Add Trie post 2024-07-20 14:16:47 +01:00
Bruno BELANYI d1a67510ef posts: gap-buffer: add movement 2024-07-20 14:16:47 +01:00
Bruno BELANYI 2c31c1aff2 posts: bloom-filter: add insertion 2024-07-20 14:16:47 +01:00
Bruno BELANYI a0e20dd341 posts: trie: add fuzzy matching 2024-07-20 14:16:47 +01:00
Bruno BELANYI e05ed1cc4a posts: gap-buffer: add deletion 2024-07-20 14:16:47 +01:00
Bruno BELANYI 798116716f posts: bloom-filter: add construction 2024-07-20 14:16:47 +01:00
Bruno BELANYI 1d37e00b3a posts: trie: add removal 2024-07-20 14:16:47 +01:00
Bruno BELANYI 72057a3224 posts: gap-buffer: add insertion 2024-07-20 14:16:47 +01:00
Bruno BELANYI 3992996a89 posts: bloom-filter: add presentation 2024-07-20 14:16:47 +01:00
Bruno BELANYI 0084c8717a posts: gap-buffer: add growth 2024-07-20 14:16:47 +01:00
Bruno BELANYI f4a64b2a37 posts: add bloom-filter 2024-07-20 14:16:47 +01:00
Bruno BELANYI 4d69be0633 posts: gap-buffer: add accessors 2024-07-20 14:16:47 +01:00
Bruno BELANYI 091e8527e3 posts: gap-buffer: add construction 2024-07-20 14:16:47 +01:00
Bruno BELANYI a4976aeefb posts: gap-buffer: add presentation 2024-07-20 14:16:47 +01:00
Bruno BELANYI 239d5c3dbd posts: add gap-buffer 2024-07-20 14:16:47 +01:00
Bruno BELANYI 55982909d2 posts: trie: add insertion 2024-07-20 14:16:37 +01:00
3 changed files with 379 additions and 0 deletions

View file

@ -78,3 +78,94 @@ def get(self, key: str) -> T | None:
# Otherwise, recurse on the child corresponding to the first letter
return self._children[key[0]].get(key[1:])
```
### Insertion
Adding a new value to the _Trie_ is similar to a key lookup, only this time we
store the new value instead of returning it.
```python
def insert(self, key: str, value: T) -> bool:
# Have we matched the full key?
if not key:
# Check whether we're overwriting a previous mapping
was_mapped = self._value is None
# Store the corresponding value
self._value = value
# Return whether we've performed an overwrite
return was_mapped
# Otherwise, recurse on the child corresponding to the first letter
return self._children[key[0]].insert(key[1:], value)
```
### Removal
Removal should also look familiar.
```python
def remove(self, key: str) -> bool:
# Have we matched the full key?
if not key:
was_mapped = self._value is None
# Remove the value
self._value = None
# Return whether it was mapped
return was_mapped
# Otherwise, recurse on the child corresponding to the first letter
return self._children[key[0]].remove(key[1:])
```
### Fuzzy matching
Fuzzily matching a given word is where the real difficulty is: the key is to
realize we can use the prefix-tree nature of a _Trie_ to avoid doing wasteful
work.
By leveraging the prefix visit order of the tree, we can build an iterative
Levenshtein distance matrix, in much the same way one would do so in its
[Dynamic Programming] implementation (see the [Wagner-Fisher algorithm]).
[Dynamic Programming]: https://en.wikipedia.org/wiki/Dynamic_programming
[Wagner-Fisher algorithm]: https://en.wikipedia.org/wiki/Wagner%E2%80%93Fischer_algorithm
```python
class FuzzyResult[T](NamedTuple):
distance: int
key: str
value: T
def get_fuzzy(self, key: str, max_distance: int = 0) -> Iterator[FuzzyResult[T]]:
def helper(
current_word: str,
node: Trie[T],
previous_row: list[int],
) -> Iterator[tuple[int, T]]:
# Iterative Levenshtein
current_row = [previous_row[0] + 1]
current_char = current_word[-1]
for column, key_char in enumerate(key, start=1):
insertion = current_row[column - 1] + 1
deletion = previous_row[column] + 1
replacement = previous_row[column - 1] + (key_char != current_char)
current_row.append(min(insertion, deletion, replacement))
# If we are under the max distance, match this node
if (distance := current_row[-1]) <= max_distance and node._value != None:
# Only if it has a value of course
yield FuzzyResult(distance, current_word, node._value)
# If we can potentially still match children, recurse
if min(current_row) <= max_distance:
for c, child in node._children.items():
yield from helper(current_word + c, child, current_row)
# Build the first row -- the edit distance from the empty string
row = list(range(len(key) + 1))
# Base case for the empty string
if (distance := row[-1]) <= max_distance and self._value != None:
yield FuzzyResult(distance, "", self._value)
for c, child in self._children.items():
yield from helper(c, child, row)
```

View file

@ -0,0 +1,191 @@
---
title: "Gap Buffer"
date: 2024-07-06T21:27:19+01:00
draft: false # I don't care for draft mode, git has branches for that
description: "As featured in GNU Emacs"
tags:
- algorithms
- data structures
- python
categories:
- programming
series:
- Cool algorithms
favorite: false
disable_feed: false
---
The [_Gap Buffer_][wiki] is a popular data structure for text editors to
represent files and editable buffers. The most famous of them probably being
[GNU Emacs][emacs].
[wiki]: https://en.wikipedia.org/wiki/Gap_buffer
[emacs]: https://www.gnu.org/software/emacs/manual/html_node/elisp/Buffer-Gap.html
<!--more-->
## What does it do?
A _Gap Buffer_ is simply a list of characters, similar to a normal string, with
the added twist of splitting it into two side: the prefix and suffix, on either
side of the cursor. In between them, a gap is left to allow for quick
insertion at the cursor.
Moving the cursor moves the gap around the buffer, the prefix and suffix getting
shorter/longer as required.
## Implementation
I'll be writing a sample implementation in Python, as with the rest of the
[series]({{< ref "/series/cool-algorithms/">}}). I don't think it showcases the
elegance of the _Gap Buffer_ in action like a C implementation full of
`memmove`s would, but it does makes it short and sweet.
### Representation
We'll be representing the gap buffer as an actual list of characters.
Given that Python doesn't _have_ characters, let's settle for a list of strings,
each representing a single character...
```python
Char = str
class GapBuffer:
# List of characters, contains prefix and suffix of string with gap in the middle
_buf: list[Char]
# The gap is contained between [start, end) (i.e: buf[start:end])
_gap_start: int
_gap_end: int
# Visual representation of the gap buffer:
# This is a very [ ]long string.
# |<----------------------------------------------->| capacity
# |<------------>| |<-------->| string
# |<------------------->| gap
# |<------------>| prefix
# |<-------->| suffix
def __init__(self, initial_capacity: int = 16) -> None:
assert initial_capacity > 0
# Initialize an empty gap buffer
self._buf = [""] * initial_capacity
self._gap_start = 0
self._gap_end = initial_capacity
```
### Accessors
I'm mostly adding these for exposition, and making it easier to write `assert`s
later.
```python
@property
def capacity(self) -> int:
return len(self._buf)
@property
def gap_length(self) -> int:
return self._gap_end - self._gap_start
@property
def string_length(self) -> int:
return self.capacity - self.gap_length
@property
def prefix_length(self) -> int:
return self._gap_start
@property
def suffix_length(self) -> int:
return self.capacity - self._gap_end
```
### Growing the buffer
I've written this method in a somewhat non-idiomatic manner, to make it closer
to how it would look in C using `realloc` instead.
It would be more efficient to use slicing to insert the needed extra capacity
directly, instead of making a new buffer and copying characters over.
```python
def grow(self, capacity: int) -> None:
assert capacity >= self.capacity
# Create a new buffer with the new capacity
new_buf = [""] * capacity
# Move the prefix/suffix to their place in the new buffer
added_capacity = capacity - len(self._buf)
new_buf[: self._gap_start] = self._buf[: self._gap_start]
new_buf[self._gap_end + added_capacity :] = self._buf[self._gap_end :]
# Use the new buffer, account for added capacity
self._buf = new_buf
self._gap_end += added_capacity
```
### Insertion
Inserting text at the cursor's position means filling up the gap in the middle
of the buffer. To do so we must first make sure that the gap is big enough, or
grow the buffer accordingly.
Then inserting the text is simply a matter of copying its characters in place,
and moving the start of the gap further right.
```python
def insert(self, val: str) -> None:
# Ensure we have enouh space to insert the whole string
if len(val) > self.gap_length:
self.grow(max(self.capacity * 2, self.string_length + len(val)))
# Fill the gap with the given string
self._buf[self._gap_start : self._gap_start + len(val)] = val
self._gap_start += len(val)
```
### Deletion
Removing text from the buffer simply expands the gap in the corresponding
direction, shortening the string's prefix/suffix. This makes it very cheap.
The methods are named after the `backspace` and `delete` keys on the keyboard.
```python
def backspace(self, dist: int = 1) -> None:
assert dist <= self.prefix_length
# Extend gap to the left
self._gap_start -= dist
def delete(self, dist: int = 1) -> None:
assert dist <= self.suffix_length
# Extend gap to the right
self._gap_end += dist
```
### Moving the cursor
Moving the cursor along the buffer will shift letters from one side of the gap
to the other, moving them accross from prefix to suffix and back.
I find Python's list slicing not quite as elegant to read as a `memmove`, though
it does make for a very small and efficient implementation.
```python
def left(self, dist: int = 1) -> None:
assert dist <= self.prefix_length
# Shift the needed number of characters from end of prefix to start of suffix
self._buf[self._gap_end - dist : self._gap_end] = self._buf[
self._gap_start - dist : self._gap_start
]
# Adjust indices accordingly
self._gap_start -= dist
self._gap_end -= dist
def right(self, dist: int = 1) -> None:
assert dist <= self.suffix_length
# Shift the needed number of characters from start of suffix to end of prefix
self._buf[self._gap_start : self._gap_start + dist] = self._buf[
self._gap_end : self._gap_end + dist
]
# Adjust indices accordingly
self._gap_start += dist
self._gap_end += dist
```

View file

@ -0,0 +1,97 @@
---
title: "Bloom Filter"
date: 2024-07-14T17:46:40+01:00
draft: false # I don't care for draft mode, git has branches for that
description: "Probably cool"
tags:
- algorithms
- data structures
- python
categories:
- programming
series:
- Cool algorithms
favorite: false
disable_feed: false
---
The [_Bloom Filter_][wiki] is a probabilistic data structure for set membership.
The filter can be used as an inexpensive first step when querying the actual
data is quite costly (e.g: as a first check for expensive cache lookups or large
data seeks).
[wiki]: https://en.wikipedia.org/wiki/Bloom_filter
<!--more-->
## What does it do?
A _Bloom Filter_ can be understood as a hash-set which can either tell you:
* An element is _not_ part of the set.
* An element _may be_ part of the set.
More specifically, one can tweak the parameters of the filter to make it so that
the _false positive_ rate of membership is quite low.
I won't be going into those calculations here, but they are quite trivial to
compute, or one can just look up appropriate values for their use case.
## Implementation
I'll be using Python, which has the nifty ability of representing bitsets
through its built-in big integers quite easily.
We'll be assuming a `BIT_COUNT` of 64 here, but the implementation can easily be
tweaked to use a different number, or even change it at construction time.
### Representation
A `BloomFilter` is just a set of bits and a list of hash functions.
```python
BIT_COUNT = 64
class BloomFilter[T]:
_bits: int
_hash_functions: list[Callable[[T], int]]
def __init__(self, hash_functions: list[Callable[[T], int]]) -> None:
# Filter is initially empty
self._bits = 0
self._hash_functions = hash_functions
```
### Inserting a key
To add an element to the filter, we take the output from each hash function and
use that to set a bit in the filter. This combination of bit will identify the
element, which we can use for lookup later.
```python
def insert(self, val: T) -> None:
# Iterate over each hash
for f in self._hash_functions:
n = f(val) % BIT_COUNT
# Set the corresponding bit
self._bit |= 1 << n
```
### Querying a key
Because the _Bloom Filter_ does not actually store its elements, but some
derived data from hashing them, it can only definitely say if an element _does
not_ belong to it. Otherwise, it _may_ be part of the set, and should be checked
against the actual underlying store.
```python
def may_contain(self, val: T) -> bool:
for f in self._hash_functions:
n = f(val) % BIT_COUNT
# If one of the bits is unset, the value is definitely not present
if not (self._bit & (1 << n)):
return False
# All bits were matched, `val` is likely to be part of the set
return True
```