posts: kd-tree: add nearest neighbour
This commit is contained in:
parent
8ae274d5b2
commit
4796157b65
|
@ -229,3 +229,244 @@ class KdSplitNode[T]:
|
|||
# Recurse into the child which contains the point
|
||||
return self.children[self._index(point)].lookup(point)
|
||||
```
|
||||
|
||||
### Closest points
|
||||
|
||||
Now to look at the most interesting operation one can do on a _k-d Tree_:
|
||||
querying for the objects which are closest to a given point (i.e: the [Nearest
|
||||
neighbour search][nns].
|
||||
|
||||
This is a more complicated algorithm, which will also need some modifications to
|
||||
current _k-d Tree_ implementation in order to track just a bit more information
|
||||
about the points it contains.
|
||||
|
||||
[nns]: https://en.wikipedia.org/wiki/Nearest_neighbor_search
|
||||
|
||||
#### A notion of distance
|
||||
|
||||
To search for the closest points to a given origin, we first need to define
|
||||
which [distance](https://en.wikipedia.org/wiki/Distance) we are using in our
|
||||
space.
|
||||
|
||||
For this example, we'll simply be using the usual definition of [(Euclidean)
|
||||
distance][euclidean-distance].
|
||||
|
||||
[euclidean-distance]: https://en.wikipedia.org/wiki/Euclidean_distance
|
||||
|
||||
```python
|
||||
def dist(point: Point, other: Point) -> float:
|
||||
return sqrt(sum((a - b) ** 2 for a, b in zip(self, other)))
|
||||
```
|
||||
|
||||
#### Tracking the tree's boundaries
|
||||
|
||||
To make the query efficient, we'll need to track the tree's boundaries: the
|
||||
bounding box of all points contained therein. This will allow us to stop the
|
||||
search early once we've found enough points and can be sure that the rest of the
|
||||
tree is too far away to qualify.
|
||||
|
||||
For this, let's define the `AABB` (Axis-Aligned Bounding Box) class.
|
||||
|
||||
```python
|
||||
class Point(NamedTuple):
|
||||
# Convenience function to replace the coordinate along a given dimension
|
||||
def replace(self, axis: Axis, new_coord: float) -> Point:
|
||||
coords = list(self)
|
||||
coords[axis] = new_coord
|
||||
return Point(coords)
|
||||
|
||||
class AABB(NamedTuple):
|
||||
# Lowest coordinates in the box
|
||||
low: Point
|
||||
# Highest coordinates in the box
|
||||
high: Point
|
||||
|
||||
# An empty box
|
||||
@classmethod
|
||||
def empty(cls) -> AABB:
|
||||
return cls(
|
||||
Point(*(float("inf"),) * 3),
|
||||
Point(*(float("-inf"),) * 3),
|
||||
)
|
||||
|
||||
# Split the box into two along a given axis for a given mid-point
|
||||
def split(axis: Axis, mid: float) -> tuple[AABB, AABB]:
|
||||
assert self.low[axis] <= mid <= self.high[axis]
|
||||
return (
|
||||
AABB(self.low, self.high.replace(axis, mid)),
|
||||
AABB(self.low.replace(axis, mid), self.high),
|
||||
)
|
||||
|
||||
# Extend a box to contain a given point
|
||||
def extend(self, point: Point) -> None:
|
||||
low = NamedTuple(*(map(min, zip(self.low, point))))
|
||||
high = NamedTuple(*(map(max, zip(self.high, point))))
|
||||
return AABB(low, high)
|
||||
|
||||
# Return the shortest between a given point and the box
|
||||
def dist_to_point(self, point: Point) -> float:
|
||||
deltas = (
|
||||
max(self.low[axis] - point[axis], 0, point[axis] - self.high[axis])
|
||||
for axis in Axis
|
||||
)
|
||||
return dist(Point(0, 0, 0), Point(*deltas))
|
||||
```
|
||||
|
||||
And do the necessary modifications to the `KdTree` to store the bounding box and
|
||||
update it as we add new points.
|
||||
|
||||
```python
|
||||
class KdTree[T]:
|
||||
_root: KdNode[T]
|
||||
# New field: to keep track of the tree's boundaries
|
||||
_aabb: AABB
|
||||
|
||||
def __init__(self):
|
||||
self._root = KdNode()
|
||||
# Initialize the empty tree with an empty bounding box
|
||||
self._aabb = AABB.empty()
|
||||
|
||||
def insert(self, point: Point, val: T) -> bool:
|
||||
# Extend the AABB for our k-d Tree when adding a point to it
|
||||
self._aabb = self._aabb.extend(point)
|
||||
return self._root.insert(point, val, Axis.X)
|
||||
```
|
||||
|
||||
#### `MaxHeap`
|
||||
|
||||
Python's builtin [`heapq`][heapq] module provides the necessary functions to
|
||||
create and interact with a [_Priority Queue_][priority-queue], in the form of a
|
||||
[_Binary Heap_][binary-heap].
|
||||
|
||||
Unfortunately, Python's library maintains a _min-heap_, which keeps the minimum
|
||||
element at the root. For this algorithm, we're interested in having a
|
||||
_max-heap_, with the maximum at the root.
|
||||
|
||||
Thankfully, one can just reverse the comparison function for each element to
|
||||
convert between the two. Let's write a `MaxHeap` class making use of this
|
||||
library, with a `Reverse` wrapper class to reverse the order of elements
|
||||
contained within it (similar to [Rust's `Reverse`][reverse]).
|
||||
|
||||
[binary-heap]: https://en.wikipedia.org/wiki/Binary_heap
|
||||
[heapq]: https://docs.python.org/3/library/heapq.html
|
||||
[priority-queue]: https://en.wikipedia.org/wiki/Priority_queue
|
||||
[reverse]: https://doc.rust-lang.org/std/cmp/struct.Reverse.html
|
||||
|
||||
```python
|
||||
# Reverses the wrapped value's ordering
|
||||
@functools.total_ordering
|
||||
class Reverse[T]:
|
||||
value: T
|
||||
|
||||
def __init__(self, value: T):
|
||||
self.value = value
|
||||
|
||||
def __lt__(self, other: Reverse[T]) -> bool:
|
||||
return self.value > other.value
|
||||
|
||||
def __eq__(self, other: Reverse[T]) -> bool:
|
||||
return self.value == other.value
|
||||
|
||||
class MaxHeap[T]:
|
||||
_heap: list[Reverse[T]]
|
||||
|
||||
def __init__(self):
|
||||
self._heap = []
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self._heap)
|
||||
|
||||
def __iter__(self) -> Iterator[T]:
|
||||
yield from (item.value for item in self._heap)
|
||||
|
||||
# Push a value on the heap
|
||||
def push(self, value: T) -> None:
|
||||
heapq.heappush(self._heap, Reverse(value))
|
||||
|
||||
# Peek at the current maximum value
|
||||
def peek(self) -> T:
|
||||
return self._heap[0].value
|
||||
|
||||
# Pop and return the highest value
|
||||
def pop(self) -> T:
|
||||
return heapq.heappop(self._heap).value
|
||||
|
||||
# Pushes a value onto the heap, pops and returns the highest value
|
||||
def pushpop(self, value: T) -> None:
|
||||
return heapq.heappushpop(self._heap, Reverse(value)).value
|
||||
```
|
||||
|
||||
#### The actual Implementation
|
||||
|
||||
Now that we have written the necessary building blocks, let's tackle the
|
||||
Implementation of `closest` for our _k-d Tree_.
|
||||
|
||||
```python
|
||||
# Wrapper type for closest points, ordered by `distance`
|
||||
@dataclasses.dataclass(order=True)
|
||||
class ClosestPoint[T](NamedTuple):
|
||||
point: Point = field(compare=False)
|
||||
value: T = field(compare=False)
|
||||
distance: float
|
||||
|
||||
class KdTree[T]:
|
||||
def closest(self, point: Point, n: int = 1) -> list[ClosestPoint[T]]:
|
||||
assert n > 0
|
||||
# Create the output heap
|
||||
res = MaxHeap()
|
||||
# Recurse onto the root node
|
||||
self._root.closest(point, res, n, self._aabb)
|
||||
# Return the resulting list, from closest to farthest
|
||||
return sorted(res)
|
||||
|
||||
class KdNode[T]:
|
||||
def closest(
|
||||
self,
|
||||
point: Point,
|
||||
out: MaxHeap[ClosestPoint[T]],
|
||||
n: int,
|
||||
bounds: AABB,
|
||||
) -> None:
|
||||
# Forward to the wrapped node
|
||||
self.inner.closest(point, out, n, bounds)
|
||||
|
||||
class KdLeafNode[T]:
|
||||
def closest(
|
||||
self,
|
||||
point: Point,
|
||||
out: MaxHeap[ClosestPoint[T]],
|
||||
n: int,
|
||||
bounds: AABB,
|
||||
) -> None:
|
||||
# At the leaf, simply iterate over all points and add them to the heap
|
||||
for p, val in self.points.items():
|
||||
item = ClosestPoint(p, val, dist(p, point))
|
||||
if len(out) < n:
|
||||
# If the heap isn't full, just push
|
||||
out.push(item)
|
||||
elif out.peek().distance > item.distance:
|
||||
# Otherwise, push and pop to keep the heap at `n` elements
|
||||
out.pushpop(item)
|
||||
|
||||
class KdSplitNode[T]:
|
||||
def closest(
|
||||
self,
|
||||
point: Point,
|
||||
out: list[ClosestPoint[T]],
|
||||
n: int,
|
||||
bounds: AABB,
|
||||
) -> None:
|
||||
index = self._index(point)
|
||||
children_bounds = bounds.split(self.axis, self.mid)
|
||||
# Iterate over the child which contains the point, then its neighbour
|
||||
for i in (index, 1 - index):
|
||||
child, bounds = self.children[i], children_bounds[i]
|
||||
# `min_dist` is 0 for the first child, and the minimum distance of
|
||||
# all points contained in the second child
|
||||
min_dist = bounds.dist_to_point(point)
|
||||
# If the heap is at capacity and the child to inspect too far, stop
|
||||
if len(out) == n and min_dist > out.peek().distance:
|
||||
return
|
||||
# Otherwise, recurse
|
||||
child.closest(point, out, n, bounds)
|
||||
```
|
||||
|
|
Loading…
Reference in a new issue