#!/usr/bin/env python import heapq import sys from typing import Iterator, NamedTuple class Point(NamedTuple): x: int y: int def neighbours(self) -> Iterator["Point"]: for dx, dy in ( (-1, 0), (1, 0), (0, -1), (0, 1), ): yield Point(self.x + dx, self.y + dy) DIMS = Point(70, 70) def solve(input: str) -> str: def parse(input: list[str]) -> list[Point]: return [Point(*map(int, line.split(","))) for line in input] def djikstra(start: Point, end: Point, blocks: set[Point]) -> int | None: # Priority queue of (distance, point) queue = [(0, start)] seen: set[Point] = set() while len(queue) > 0: cost, p = heapq.heappop(queue) if p == end: return cost # We must have seen p with a smaller distance before if p in seen: continue # First time encountering p, must be the smallest distance to it seen.add(p) # Add all neighbours to be visited for n in p.neighbours(): if p in blocks: continue if not 0 <= p.x <= DIMS.x: continue if not 0 <= p.y <= DIMS.y: continue heapq.heappush(queue, (cost + 1, n)) return None def bisect_cutoff(start: Point, end: Point, blocks: list[Point]) -> Point: # Cutting off the path is monotonic: once cut-off, it's never uncut low, high = 0, len(blocks) while low < high: mid = low + (high - low + 1) // 2 if djikstra(start, end, set(blocks[:mid])) is None: high = mid - 1 else: low = mid return blocks[low] coords = parse(input.splitlines()) byte = bisect_cutoff(Point(0, 0), DIMS, coords) return f"{byte.x},{byte.y}" def main() -> None: input = sys.stdin.read() print(solve(input)) if __name__ == "__main__": main()