Compare commits
3 commits
841830555c
...
a9c325ce14
Author | SHA1 | Date | |
---|---|---|---|
Bruno BELANYI | a9c325ce14 | ||
Bruno BELANYI | e457aaed44 | ||
Bruno BELANYI | 2c486e5984 |
95
2022/d14/ex1/ex1.py
Executable file
95
2022/d14/ex1/ex1.py
Executable file
|
@ -0,0 +1,95 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
import dataclasses
|
||||
import itertools
|
||||
import sys
|
||||
from collections.abc import Iterator
|
||||
from typing import NamedTuple, Optional
|
||||
|
||||
|
||||
def sign(n: int) -> int:
|
||||
if n > 0:
|
||||
return 1
|
||||
elif n < 0:
|
||||
return -1
|
||||
return 0
|
||||
|
||||
|
||||
class Point(NamedTuple):
|
||||
x: int
|
||||
y: int
|
||||
|
||||
@classmethod
|
||||
def from_input(cls, input: str) -> "Point":
|
||||
x, y = input.split(",")
|
||||
return cls(int(x), int(y))
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class Line:
|
||||
points: list[Point]
|
||||
|
||||
@classmethod
|
||||
def from_input(cls, input: str) -> "Line":
|
||||
points = [Point.from_input(p) for p in input.split(" -> ")]
|
||||
return cls(points)
|
||||
|
||||
@property
|
||||
def all_points(self) -> set[Point]:
|
||||
res: set[Point] = set()
|
||||
|
||||
for start, end in itertools.pairwise(self.points):
|
||||
dx, dy = sign(end.x - start.x), sign(end.y - start.y)
|
||||
res.add(start)
|
||||
while start != end:
|
||||
start = Point(start.x + dx, start.y + dy)
|
||||
res.add(start)
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def solve(input: list[str]) -> int:
|
||||
lines = [Line.from_input(line) for line in input]
|
||||
all_points = set.union(*(line.all_points for line in lines))
|
||||
max_height = max(p.y for p in all_points)
|
||||
|
||||
def sand_candidates(p: Point) -> Iterator[Point]:
|
||||
for dx, dy in ((0, 1), (-1, 1), (1, 1)):
|
||||
yield Point(p.x + dx, p.y + dy)
|
||||
|
||||
def add_sand(points: set[Point]) -> Optional[Point]:
|
||||
start = Point(500, 0)
|
||||
|
||||
assert start not in points # Sanity check
|
||||
|
||||
while True:
|
||||
# Steady state was reached
|
||||
if start.y >= max_height:
|
||||
return None
|
||||
|
||||
viable_candidates = (p for p in sand_candidates(start) if p not in points)
|
||||
candidate = next(viable_candidates, None)
|
||||
# Sand can't fall any lower
|
||||
if candidate is None:
|
||||
break
|
||||
start = candidate
|
||||
|
||||
return start
|
||||
|
||||
res = 0
|
||||
while True:
|
||||
grain = add_sand(all_points)
|
||||
if grain is None:
|
||||
break
|
||||
all_points.add(grain)
|
||||
res += 1
|
||||
return res
|
||||
|
||||
|
||||
def main() -> None:
|
||||
input = sys.stdin.read().splitlines()
|
||||
print(solve(input))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
95
2022/d14/ex2/ex2.py
Executable file
95
2022/d14/ex2/ex2.py
Executable file
|
@ -0,0 +1,95 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
import dataclasses
|
||||
import itertools
|
||||
import sys
|
||||
from collections.abc import Iterator
|
||||
from typing import NamedTuple, Optional
|
||||
|
||||
|
||||
def sign(n: int) -> int:
|
||||
if n > 0:
|
||||
return 1
|
||||
elif n < 0:
|
||||
return -1
|
||||
return 0
|
||||
|
||||
|
||||
class Point(NamedTuple):
|
||||
x: int
|
||||
y: int
|
||||
|
||||
@classmethod
|
||||
def from_input(cls, input: str) -> "Point":
|
||||
x, y = input.split(",")
|
||||
return cls(int(x), int(y))
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class Line:
|
||||
points: list[Point]
|
||||
|
||||
@classmethod
|
||||
def from_input(cls, input: str) -> "Line":
|
||||
points = [Point.from_input(p) for p in input.split(" -> ")]
|
||||
return cls(points)
|
||||
|
||||
@property
|
||||
def all_points(self) -> set[Point]:
|
||||
res: set[Point] = set()
|
||||
|
||||
for start, end in itertools.pairwise(self.points):
|
||||
dx, dy = sign(end.x - start.x), sign(end.y - start.y)
|
||||
res.add(start)
|
||||
while start != end:
|
||||
start = Point(start.x + dx, start.y + dy)
|
||||
res.add(start)
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def solve(input: list[str]) -> int:
|
||||
lines = [Line.from_input(line) for line in input]
|
||||
all_points = set.union(*(line.all_points for line in lines))
|
||||
floor = max(p.y for p in all_points) + 2
|
||||
|
||||
def sand_candidates(p: Point) -> Iterator[Point]:
|
||||
for dx, dy in ((0, 1), (-1, 1), (1, 1)):
|
||||
yield Point(p.x + dx, p.y + dy)
|
||||
|
||||
def add_sand(points: set[Point]) -> Optional[Point]:
|
||||
start = Point(500, 0)
|
||||
|
||||
if start in points:
|
||||
return None
|
||||
|
||||
while True:
|
||||
viable_candidates = (p for p in sand_candidates(start) if p not in points)
|
||||
candidate = next(viable_candidates, None)
|
||||
# Sand can't fall any lower
|
||||
if candidate is None:
|
||||
break
|
||||
# Sand can't fall through the floor
|
||||
if candidate.y == floor:
|
||||
break
|
||||
start = candidate
|
||||
|
||||
return start
|
||||
|
||||
res = 0
|
||||
while True:
|
||||
grain = add_sand(all_points)
|
||||
if grain is None:
|
||||
break
|
||||
all_points.add(grain)
|
||||
res += 1
|
||||
return res
|
||||
|
||||
|
||||
def main() -> None:
|
||||
input = sys.stdin.read().splitlines()
|
||||
print(solve(input))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
144
2022/d14/ex2/input
Normal file
144
2022/d14/ex2/input
Normal file
|
@ -0,0 +1,144 @@
|
|||
513,151 -> 513,155 -> 510,155 -> 510,161 -> 519,161 -> 519,155 -> 515,155 -> 515,151
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
488,36 -> 488,32 -> 488,36 -> 490,36 -> 490,26 -> 490,36 -> 492,36 -> 492,26 -> 492,36 -> 494,36 -> 494,32 -> 494,36
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
510,167 -> 514,167
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
486,120 -> 486,122 -> 482,122 -> 482,128 -> 491,128 -> 491,122 -> 490,122 -> 490,120
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
488,36 -> 488,32 -> 488,36 -> 490,36 -> 490,26 -> 490,36 -> 492,36 -> 492,26 -> 492,36 -> 494,36 -> 494,32 -> 494,36
|
||||
498,175 -> 498,176 -> 505,176
|
||||
493,39 -> 493,43 -> 489,43 -> 489,51 -> 501,51 -> 501,43 -> 496,43 -> 496,39
|
||||
489,79 -> 493,79
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
483,85 -> 487,85
|
||||
486,120 -> 486,122 -> 482,122 -> 482,128 -> 491,128 -> 491,122 -> 490,122 -> 490,120
|
||||
480,82 -> 484,82
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
494,144 -> 494,145 -> 504,145 -> 504,144
|
||||
486,54 -> 490,54
|
||||
488,36 -> 488,32 -> 488,36 -> 490,36 -> 490,26 -> 490,36 -> 492,36 -> 492,26 -> 492,36 -> 494,36 -> 494,32 -> 494,36
|
||||
492,60 -> 496,60
|
||||
493,39 -> 493,43 -> 489,43 -> 489,51 -> 501,51 -> 501,43 -> 496,43 -> 496,39
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
513,151 -> 513,155 -> 510,155 -> 510,161 -> 519,161 -> 519,155 -> 515,155 -> 515,151
|
||||
493,39 -> 493,43 -> 489,43 -> 489,51 -> 501,51 -> 501,43 -> 496,43 -> 496,39
|
||||
497,147 -> 497,148 -> 513,148 -> 513,147
|
||||
493,39 -> 493,43 -> 489,43 -> 489,51 -> 501,51 -> 501,43 -> 496,43 -> 496,39
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
488,36 -> 488,32 -> 488,36 -> 490,36 -> 490,26 -> 490,36 -> 492,36 -> 492,26 -> 492,36 -> 494,36 -> 494,32 -> 494,36
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
513,151 -> 513,155 -> 510,155 -> 510,161 -> 519,161 -> 519,155 -> 515,155 -> 515,151
|
||||
474,70 -> 478,70
|
||||
466,103 -> 466,104 -> 481,104 -> 481,103
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
471,85 -> 475,85
|
||||
490,131 -> 490,134 -> 482,134 -> 482,139 -> 501,139 -> 501,134 -> 495,134 -> 495,131
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
488,36 -> 488,32 -> 488,36 -> 490,36 -> 490,26 -> 490,36 -> 492,36 -> 492,26 -> 492,36 -> 494,36 -> 494,32 -> 494,36
|
||||
493,39 -> 493,43 -> 489,43 -> 489,51 -> 501,51 -> 501,43 -> 496,43 -> 496,39
|
||||
480,70 -> 484,70
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
468,70 -> 472,70
|
||||
480,60 -> 484,60
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
477,68 -> 481,68
|
||||
483,79 -> 487,79
|
||||
495,85 -> 499,85
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
493,39 -> 493,43 -> 489,43 -> 489,51 -> 501,51 -> 501,43 -> 496,43 -> 496,39
|
||||
486,120 -> 486,122 -> 482,122 -> 482,128 -> 491,128 -> 491,122 -> 490,122 -> 490,120
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
474,82 -> 478,82
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
490,131 -> 490,134 -> 482,134 -> 482,139 -> 501,139 -> 501,134 -> 495,134 -> 495,131
|
||||
495,63 -> 499,63
|
||||
489,63 -> 493,63
|
||||
477,79 -> 481,79
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
501,170 -> 505,170
|
||||
497,147 -> 497,148 -> 513,148 -> 513,147
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
489,85 -> 493,85
|
||||
488,36 -> 488,32 -> 488,36 -> 490,36 -> 490,26 -> 490,36 -> 492,36 -> 492,26 -> 492,36 -> 494,36 -> 494,32 -> 494,36
|
||||
490,131 -> 490,134 -> 482,134 -> 482,139 -> 501,139 -> 501,134 -> 495,134 -> 495,131
|
||||
490,131 -> 490,134 -> 482,134 -> 482,139 -> 501,139 -> 501,134 -> 495,134 -> 495,131
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
471,68 -> 475,68
|
||||
488,36 -> 488,32 -> 488,36 -> 490,36 -> 490,26 -> 490,36 -> 492,36 -> 492,26 -> 492,36 -> 494,36 -> 494,32 -> 494,36
|
||||
486,76 -> 490,76
|
||||
483,73 -> 487,73
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
513,151 -> 513,155 -> 510,155 -> 510,161 -> 519,161 -> 519,155 -> 515,155 -> 515,151
|
||||
466,103 -> 466,104 -> 481,104 -> 481,103
|
||||
504,167 -> 508,167
|
||||
507,170 -> 511,170
|
||||
488,36 -> 488,32 -> 488,36 -> 490,36 -> 490,26 -> 490,36 -> 492,36 -> 492,26 -> 492,36 -> 494,36 -> 494,32 -> 494,36
|
||||
486,120 -> 486,122 -> 482,122 -> 482,128 -> 491,128 -> 491,122 -> 490,122 -> 490,120
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
513,151 -> 513,155 -> 510,155 -> 510,161 -> 519,161 -> 519,155 -> 515,155 -> 515,151
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
507,164 -> 511,164
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
486,120 -> 486,122 -> 482,122 -> 482,128 -> 491,128 -> 491,122 -> 490,122 -> 490,120
|
||||
474,66 -> 478,66
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
486,120 -> 486,122 -> 482,122 -> 482,128 -> 491,128 -> 491,122 -> 490,122 -> 490,120
|
||||
488,36 -> 488,32 -> 488,36 -> 490,36 -> 490,26 -> 490,36 -> 492,36 -> 492,26 -> 492,36 -> 494,36 -> 494,32 -> 494,36
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
486,120 -> 486,122 -> 482,122 -> 482,128 -> 491,128 -> 491,122 -> 490,122 -> 490,120
|
||||
489,57 -> 493,57
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
488,36 -> 488,32 -> 488,36 -> 490,36 -> 490,26 -> 490,36 -> 492,36 -> 492,26 -> 492,36 -> 494,36 -> 494,32 -> 494,36
|
||||
480,76 -> 484,76
|
||||
488,36 -> 488,32 -> 488,36 -> 490,36 -> 490,26 -> 490,36 -> 492,36 -> 492,26 -> 492,36 -> 494,36 -> 494,32 -> 494,36
|
||||
477,63 -> 481,63
|
||||
492,82 -> 496,82
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
513,170 -> 517,170
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
490,131 -> 490,134 -> 482,134 -> 482,139 -> 501,139 -> 501,134 -> 495,134 -> 495,131
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
483,57 -> 487,57
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
498,175 -> 498,176 -> 505,176
|
||||
486,60 -> 490,60
|
||||
497,147 -> 497,148 -> 513,148 -> 513,147
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
513,151 -> 513,155 -> 510,155 -> 510,161 -> 519,161 -> 519,155 -> 515,155 -> 515,151
|
||||
486,82 -> 490,82
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
490,131 -> 490,134 -> 482,134 -> 482,139 -> 501,139 -> 501,134 -> 495,134 -> 495,131
|
||||
477,85 -> 481,85
|
||||
493,23 -> 493,21 -> 493,23 -> 495,23 -> 495,18 -> 495,23 -> 497,23 -> 497,19 -> 497,23 -> 499,23 -> 499,18 -> 499,23 -> 501,23 -> 501,18 -> 501,23 -> 503,23 -> 503,15 -> 503,23 -> 505,23 -> 505,16 -> 505,23
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
483,63 -> 487,63
|
||||
513,151 -> 513,155 -> 510,155 -> 510,161 -> 519,161 -> 519,155 -> 515,155 -> 515,151
|
||||
466,103 -> 466,104 -> 481,104 -> 481,103
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
463,98 -> 463,97 -> 463,98 -> 465,98 -> 465,94 -> 465,98 -> 467,98 -> 467,94 -> 467,98 -> 469,98 -> 469,88 -> 469,98 -> 471,98 -> 471,90 -> 471,98 -> 473,98 -> 473,97 -> 473,98 -> 475,98 -> 475,95 -> 475,98
|
||||
494,144 -> 494,145 -> 504,145 -> 504,144
|
||||
493,39 -> 493,43 -> 489,43 -> 489,51 -> 501,51 -> 501,43 -> 496,43 -> 496,39
|
||||
490,131 -> 490,134 -> 482,134 -> 482,139 -> 501,139 -> 501,134 -> 495,134 -> 495,131
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
||||
494,144 -> 494,145 -> 504,145 -> 504,144
|
||||
476,117 -> 476,114 -> 476,117 -> 478,117 -> 478,110 -> 478,117 -> 480,117 -> 480,110 -> 480,117 -> 482,117 -> 482,114 -> 482,117 -> 484,117 -> 484,113 -> 484,117 -> 486,117 -> 486,113 -> 486,117
|
Loading…
Reference in a new issue