From fb13cf95c3853e91c95943393bbe423c21fd5d3a Mon Sep 17 00:00:00 2001 From: Bruno BELANYI Date: Mon, 25 Dec 2023 17:20:26 +0100 Subject: [PATCH] 2023: d25: ex1: add solution --- 2023/d25/ex1/ex1.py | 125 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 125 insertions(+) create mode 100755 2023/d25/ex1/ex1.py diff --git a/2023/d25/ex1/ex1.py b/2023/d25/ex1/ex1.py new file mode 100755 index 0000000..8b35f11 --- /dev/null +++ b/2023/d25/ex1/ex1.py @@ -0,0 +1,125 @@ +#!/usr/bin/env python + +import copy +import random +import sys +from collections import Counter, defaultdict +from typing import cast + +Graph = dict[str, Counter[str]] + + +def solve(input: list[str]) -> int: + def parse(input: list[str]) -> Graph: + res: Graph = defaultdict(Counter) + + for line in input: + node, destinations = line.split(": ") + for dest in destinations.split(): + res[node][dest] = 1 + res[dest][node] = 1 + + return res + + def contract_edge(graph: Graph, s: str, t: str) -> None: + assert s != t # Sanity check + assert s in graph # Sanity check + assert t in graph # Sanity check + + # Merge the edges + graph[s] += graph[t] + # Don't count the potential t-s edge + del graph[s][s] + # Remove t from the graph + for other in graph[t].keys(): + del graph[other][t] + del graph[t] + # Update the neighbours values + for other, v in graph[s].items(): + graph[other][s] = v + + # Stoer-Wagner algorithm + def min_cut_exact(graph: Graph) -> tuple[set[str], set[str]]: + def phase(graph: Graph) -> tuple[str, str, int]: + assert len(graph) >= 2 # Sanity check + + candidates = set(graph.keys()) + start = candidates.pop() + found = [start] + cut_weight: list[int] = [] + + while candidates: + (weight, node) = max( + (sum(graph[node][other] for other in found), node) + for node in candidates + ) + candidates.discard(node) + found.append(node) + cut_weight.append(weight) + + return found[-2], found[-1], cut_weight[-1] + + partition: set[str] = set() + g = copy.deepcopy(graph) + + # Initialize our best weight/parition + best_weight = cast(int, float("inf")) + best_partition = set(partition) + + while len(g) > 1: + s, t, w = phase(g) + partition.add(t) + contract_edge(g, s, t) + if w < best_weight: + best_weight = w + best_partition = set(partition) + + return best_partition, graph.keys() - best_partition + + def min_cut_karger(graph: Graph, target: int) -> tuple[set[str], set[str]]: + assert len(graph) >= 2 # Sanity check + + original_edges = [ + (source, dest) + for source, destinations in graph.items() + for dest in destinations + if source < dest + ] + + while True: + g = copy.deepcopy(graph) + contracted = {v: v for v in graph} + while len(g) > 2: + s, t = (contracted[v] for v in random.choice(original_edges)) + if s == t: + continue + contract_edge(g, s, t) + # Hacky union-find-ish algorithm, for laziness + for k, v in contracted.items(): + if v != t: + continue + contracted[k] = s + # Pick a partition at random here + node = next(iter(g)) + # Check that we met our target + if g[node].total() > target: + continue + partition = {n for n, parent in contracted.items() if parent == node} + return partition, graph.keys() - partition + + graph = parse(input) + # The exact algorithm is very slow on big graphs, at which point Karger's algorithm is better + if len(graph) < 100: + left, right = min_cut_exact(graph) + else: + left, right = min_cut_karger(graph, 3) + return len(left) * len(right) + + +def main() -> None: + input = sys.stdin.read().splitlines() + print(solve(input)) + + +if __name__ == "__main__": + main()