2024: d15: ex2: add solution
This commit is contained in:
parent
7198c00145
commit
4f16082850
147
2024/d15/ex2/ex2.py
Executable file
147
2024/d15/ex2/ex2.py
Executable file
|
@ -0,0 +1,147 @@
|
||||||
|
#!/usr/bin/env python
|
||||||
|
|
||||||
|
import copy
|
||||||
|
import enum
|
||||||
|
import sys
|
||||||
|
from typing import NamedTuple
|
||||||
|
|
||||||
|
|
||||||
|
class Point(NamedTuple):
|
||||||
|
x: int
|
||||||
|
y: int
|
||||||
|
|
||||||
|
|
||||||
|
class Direction(enum.StrEnum):
|
||||||
|
UP = "^"
|
||||||
|
RIGHT = ">"
|
||||||
|
DOWN = "v"
|
||||||
|
LEFT = "<"
|
||||||
|
|
||||||
|
def step(self, p: Point) -> Point:
|
||||||
|
dx: int
|
||||||
|
dy: int
|
||||||
|
|
||||||
|
match self:
|
||||||
|
case Direction.UP:
|
||||||
|
dx, dy = -1, 0
|
||||||
|
case Direction.RIGHT:
|
||||||
|
dx, dy = 0, 1
|
||||||
|
case Direction.DOWN:
|
||||||
|
dx, dy = 1, 0
|
||||||
|
case Direction.LEFT:
|
||||||
|
dx, dy = 0, -1
|
||||||
|
|
||||||
|
return Point(p.x + dx, p.y + dy)
|
||||||
|
|
||||||
|
|
||||||
|
class Object(enum.StrEnum):
|
||||||
|
BOX = "O"
|
||||||
|
WALL = "#"
|
||||||
|
|
||||||
|
|
||||||
|
# Maze always contains the left part of the object
|
||||||
|
Maze = dict[Point, Object]
|
||||||
|
# WideMaze maps left and right side of an object to its (left, right) tuple
|
||||||
|
WideMaze = dict[Point, tuple[Point, Point]]
|
||||||
|
|
||||||
|
|
||||||
|
def solve(input: str) -> int:
|
||||||
|
def parse_maze(input: list[str]) -> tuple[Point, Maze]:
|
||||||
|
robot: Point | None = None
|
||||||
|
maze: Maze = {}
|
||||||
|
for x, line in enumerate(input):
|
||||||
|
for y, c in enumerate(line):
|
||||||
|
if c == ".":
|
||||||
|
continue
|
||||||
|
if c == "@":
|
||||||
|
robot = Point(x, y * 2)
|
||||||
|
continue
|
||||||
|
maze[Point(x, y * 2)] = Object(c)
|
||||||
|
|
||||||
|
assert robot is not None # Sanity check
|
||||||
|
return robot, maze
|
||||||
|
|
||||||
|
def parse_directions(input: str) -> list[Direction]:
|
||||||
|
return [Direction(c) for c in input if c in Direction]
|
||||||
|
|
||||||
|
def parse(input: str) -> tuple[Point, Maze, list[Direction]]:
|
||||||
|
maze_input, directions_input = input.split("\n\n")
|
||||||
|
robot, maze = parse_maze(maze_input.splitlines())
|
||||||
|
directions = parse_directions(directions_input)
|
||||||
|
return robot, maze, directions
|
||||||
|
|
||||||
|
def step(robot: Point, maze: Maze, d: Direction) -> tuple[Point, Maze]:
|
||||||
|
def widen_maze() -> WideMaze:
|
||||||
|
res: WideMaze = {}
|
||||||
|
for p in maze.keys():
|
||||||
|
right_p = Point(p.x, p.y + 1)
|
||||||
|
res[p] = (p, right_p)
|
||||||
|
res[right_p] = (p, right_p)
|
||||||
|
return res
|
||||||
|
|
||||||
|
def boxes_along(wide_maze: WideMaze) -> set[Point] | None:
|
||||||
|
def helper(current: Point) -> set[Point] | None:
|
||||||
|
# Return empty set if we hit the air
|
||||||
|
if current not in wide_maze:
|
||||||
|
return set()
|
||||||
|
|
||||||
|
# Query both sides of the object
|
||||||
|
left, right = wide_maze[current]
|
||||||
|
|
||||||
|
# Return None if we hit a wall
|
||||||
|
if maze[left] == Object.WALL:
|
||||||
|
return None
|
||||||
|
assert right not in maze # Sanity check
|
||||||
|
|
||||||
|
# Try to move both sides of the box recursively
|
||||||
|
res_left: set[Point] = set()
|
||||||
|
res_right: set[Point] = set()
|
||||||
|
# Only check next_left if not moving right
|
||||||
|
if (next_left := d.step(left)) != right:
|
||||||
|
if (try_left := helper(next_left)) is None:
|
||||||
|
return None
|
||||||
|
res_left = try_left
|
||||||
|
# And only check next_right if not moving left
|
||||||
|
if (next_right := d.step(right)) != left:
|
||||||
|
if (try_right := helper(next_right)) is None:
|
||||||
|
return None
|
||||||
|
res_right = try_right
|
||||||
|
|
||||||
|
# Both sides succeeded, return the set of boxes to move
|
||||||
|
return {left} | res_left | res_right
|
||||||
|
|
||||||
|
return helper(d.step(robot))
|
||||||
|
|
||||||
|
def move_boxes(boxes: set[Point]) -> Maze:
|
||||||
|
new_maze = copy.copy(maze)
|
||||||
|
for box in boxes:
|
||||||
|
new_maze.pop(box)
|
||||||
|
new_maze[d.step(box)] = maze[box]
|
||||||
|
return new_maze
|
||||||
|
|
||||||
|
new_robot = d.step(robot)
|
||||||
|
# If we hit a wall, abort the step
|
||||||
|
if maze.get(new_robot) == Object.WALL:
|
||||||
|
return robot, maze
|
||||||
|
# If a box hits a wall, abort the step
|
||||||
|
if (boxes := boxes_along(widen_maze())) is None:
|
||||||
|
return robot, maze
|
||||||
|
# Otherwise move everything along the direction
|
||||||
|
return new_robot, move_boxes(boxes)
|
||||||
|
|
||||||
|
def compute_coordinates(maze: Maze) -> int:
|
||||||
|
return sum(100 * p.x + p.y for p, obj in maze.items() if obj == Object.BOX)
|
||||||
|
|
||||||
|
robot, maze, directions = parse(input)
|
||||||
|
for d in directions:
|
||||||
|
robot, maze = step(robot, maze, d)
|
||||||
|
return compute_coordinates(maze)
|
||||||
|
|
||||||
|
|
||||||
|
def main() -> None:
|
||||||
|
input = sys.stdin.read()
|
||||||
|
print(solve(input))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
Loading…
Reference in a new issue