2024: d17: ex2: add solution
This commit is contained in:
parent
e611bfee3b
commit
4bad7e1de4
135
2024/d17/ex2/ex2.py
Executable file
135
2024/d17/ex2/ex2.py
Executable file
|
@ -0,0 +1,135 @@
|
||||||
|
#!/usr/bin/env python
|
||||||
|
|
||||||
|
import copy
|
||||||
|
import dataclasses
|
||||||
|
import enum
|
||||||
|
import sys
|
||||||
|
|
||||||
|
|
||||||
|
@dataclasses.dataclass
|
||||||
|
class Registers:
|
||||||
|
reg_a: int
|
||||||
|
reg_b: int
|
||||||
|
reg_c: int
|
||||||
|
|
||||||
|
|
||||||
|
class Instruction(enum.IntEnum):
|
||||||
|
ADV = 0
|
||||||
|
BXL = 1
|
||||||
|
BST = 2
|
||||||
|
JNZ = 3
|
||||||
|
BXC = 4
|
||||||
|
OUT = 5
|
||||||
|
BDV = 6
|
||||||
|
CDV = 7
|
||||||
|
|
||||||
|
|
||||||
|
@dataclasses.dataclass
|
||||||
|
class Computer:
|
||||||
|
registers: Registers
|
||||||
|
program: list[int]
|
||||||
|
ip: int = 0
|
||||||
|
|
||||||
|
def _resolve_combo_operand(self, operand: int) -> int:
|
||||||
|
assert operand != 7 # Sanity check
|
||||||
|
if 0 <= operand <= 3:
|
||||||
|
return operand
|
||||||
|
if operand == 4:
|
||||||
|
return self.registers.reg_a
|
||||||
|
if operand == 5:
|
||||||
|
return self.registers.reg_b
|
||||||
|
if operand == 6:
|
||||||
|
return self.registers.reg_c
|
||||||
|
assert False # Sanity check
|
||||||
|
|
||||||
|
# Returns False if the computer is halted
|
||||||
|
# `output` is an out parameter
|
||||||
|
def step(self, output: list[int]) -> bool:
|
||||||
|
# NOTE: also accounting for operand in overflow check here
|
||||||
|
if (self.ip + 1) >= len(self.program):
|
||||||
|
return False
|
||||||
|
|
||||||
|
instr, literal_operand = (
|
||||||
|
Instruction(self.program[self.ip]),
|
||||||
|
self.program[self.ip + 1],
|
||||||
|
)
|
||||||
|
combo_operand = self._resolve_combo_operand(literal_operand)
|
||||||
|
|
||||||
|
ip_delta = 2
|
||||||
|
match instr:
|
||||||
|
case Instruction.ADV:
|
||||||
|
self.registers.reg_a //= 2**combo_operand
|
||||||
|
case Instruction.BXL:
|
||||||
|
self.registers.reg_b ^= literal_operand
|
||||||
|
case Instruction.BST:
|
||||||
|
self.registers.reg_b = combo_operand % 8
|
||||||
|
case Instruction.JNZ:
|
||||||
|
if self.registers.reg_a != 0:
|
||||||
|
self.ip = literal_operand
|
||||||
|
ip_delta = 0
|
||||||
|
case Instruction.BXC:
|
||||||
|
self.registers.reg_b ^= self.registers.reg_c
|
||||||
|
case Instruction.OUT:
|
||||||
|
output.append(combo_operand % 8)
|
||||||
|
case Instruction.BDV:
|
||||||
|
self.registers.reg_b = self.registers.reg_a // 2**combo_operand
|
||||||
|
case Instruction.CDV:
|
||||||
|
self.registers.reg_c = self.registers.reg_a // 2**combo_operand
|
||||||
|
self.ip += ip_delta
|
||||||
|
|
||||||
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
def solve(input: str) -> int:
|
||||||
|
def parse_registers(input: list[str]) -> Registers:
|
||||||
|
def parse_register(input: str) -> int:
|
||||||
|
return int(input.split(": ")[1])
|
||||||
|
|
||||||
|
return Registers(*map(parse_register, input))
|
||||||
|
|
||||||
|
def parse(input: str) -> Computer:
|
||||||
|
registers, program_str = input.split("\n\n")
|
||||||
|
program = list(map(int, program_str.removeprefix("Program: ").split(",")))
|
||||||
|
return Computer(parse_registers(registers.splitlines()), program)
|
||||||
|
|
||||||
|
# Rely on the shape of the input, which reads 3 bits of reg_a at a time
|
||||||
|
def find_quine(computer: Computer) -> int:
|
||||||
|
def is_quine(a: int, n_outputs: int) -> bool:
|
||||||
|
if n_outputs == 0:
|
||||||
|
return True
|
||||||
|
tmp = copy.deepcopy(computer)
|
||||||
|
tmp.registers.reg_a = a
|
||||||
|
output: list[int] = []
|
||||||
|
while tmp.step(output):
|
||||||
|
pass
|
||||||
|
return output[-n_outputs:] == computer.program[-n_outputs:]
|
||||||
|
|
||||||
|
def helper(a: int, n_outputs: int) -> int | None:
|
||||||
|
# If not a quine of the correct length, abandon this candidate
|
||||||
|
if not is_quine(a, n_outputs):
|
||||||
|
return None
|
||||||
|
# If we've found all digits, return the candidate
|
||||||
|
if n_outputs == len(computer.program):
|
||||||
|
return a
|
||||||
|
# Try to find a longer quine, starting from this candidate
|
||||||
|
for next_a in range(a * 8, a * 8 + 8):
|
||||||
|
# We found a full quine, guaranteed to be the smallest value
|
||||||
|
if (res := helper(next_a, n_outputs + 1)) is not None:
|
||||||
|
return res
|
||||||
|
return None
|
||||||
|
|
||||||
|
res = helper(0, 0)
|
||||||
|
assert res is not None # Sanity check
|
||||||
|
return res
|
||||||
|
|
||||||
|
computer = parse(input)
|
||||||
|
return find_quine(computer)
|
||||||
|
|
||||||
|
|
||||||
|
def main() -> None:
|
||||||
|
input = sys.stdin.read()
|
||||||
|
print(solve(input))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
Loading…
Reference in a new issue