2019: d11: ex2: add solution

This commit is contained in:
Bruno BELANYI 2019-12-11 20:26:16 +01:00
parent 31090e26d3
commit 3ffe51992d
1 changed files with 253 additions and 0 deletions

253
2019/d11/ex2/ex2.py Executable file
View File

@ -0,0 +1,253 @@
#!/usr/bin/env python
import sys
from dataclasses import dataclass, field
from enum import IntEnum
from typing import Dict, List, NamedTuple
class ParameterMode(IntEnum):
POSITION = 0 # Acts on address
IMMEDIATE = 1 # Acts on the immediate value
RELATIVE = 2 # Acts on offset to relative base
class Instruction(NamedTuple):
address: int # The address of the instruction, for convenience
op: int # The opcode
p1_mode: ParameterMode # Which mode is the first parameter in
p2_mode: ParameterMode # Which mode is the second parameter in
p3_mode: ParameterMode # Which mode is the third parameter in
def lookup_ops(index: int, memory: List[int]) -> Instruction:
digits = list(map(int, str(memory[index])))
a, b, c, d, e = [0] * (5 - len(digits)) + digits # Pad with default values
return Instruction(
address=index,
op=d * 10 + e,
p1_mode=ParameterMode(c),
p2_mode=ParameterMode(b),
p3_mode=ParameterMode(a),
)
class InputInterrupt(Exception):
pass
class OutputInterrupt(Exception):
pass
@dataclass
class Computer:
memory: List[int] # Memory space
rip: int = 0 # Instruction pointer
input_list: List[int] = field(default_factory=list)
output_list: List[int] = field(default_factory=list)
is_halted: bool = field(default=False, init=False)
relative_base: int = field(default=0, init=False)
def run(self) -> None:
while not self.is_halted:
self.run_single()
def run_no_output_interrupt(self) -> None:
while not self.is_halted:
try:
self.run_single()
except OutputInterrupt:
continue
def run_single(self): # Returns True when halted
instr = lookup_ops(self.rip, self.memory)
if instr.op == 99: # Halt
self.is_halted = True
elif instr.op == 1: # Sum
self._do_addition(instr)
elif instr.op == 2: # Multiplication
self._do_multiplication(instr)
elif instr.op == 3: # Load from input
self._do_input(instr)
elif instr.op == 4: # Store to output
self._do_output(instr)
elif instr.op == 5: # Jump if true
self._do_jump_if_true(instr)
elif instr.op == 6: # Jump if false
self._do_jump_if_false(instr)
elif instr.op == 7: # Less than
self._do_less_than(instr)
elif instr.op == 8: # Equal to
self._do_equal_to(instr)
elif instr.op == 9: # Change relative base
self._do_change_relative_base(instr)
else:
assert False # Sanity check
def _fill_to_addres(self, address: int) -> None:
values = address - len(self.memory) + 1
if values <= 0:
return
for __ in range(values):
self.memory.append(0)
def _get_value(self, mode: ParameterMode, val: int) -> int:
if mode == ParameterMode.POSITION:
assert 0 <= val # Sanity check
self._fill_to_addres(val)
return self.memory[val]
elif mode == ParameterMode.RELATIVE:
val += self.relative_base
assert 0 <= val # Sanity check
self._fill_to_addres(val)
return self.memory[val]
assert mode == ParameterMode.IMMEDIATE # Sanity check
return val
def _set_value(self, mode: ParameterMode, address: int, value: int) -> None:
if mode == ParameterMode.RELATIVE:
address += self.relative_base
else:
assert mode == ParameterMode.POSITION # Sanity check
assert address >= 0 # Sanity check
self._fill_to_addres(address)
self.memory[address] = value
def _do_addition(self, instr: Instruction) -> None:
lhs = self._get_value(instr.p1_mode, self.memory[instr.address + 1])
rhs = self._get_value(instr.p2_mode, self.memory[instr.address + 2])
dest = self.memory[instr.address + 3]
self._set_value(instr.p3_mode, dest, lhs + rhs)
self.rip += 4 # Length of the instruction
def _do_multiplication(self, instr: Instruction) -> None:
lhs = self._get_value(instr.p1_mode, self.memory[instr.address + 1])
rhs = self._get_value(instr.p2_mode, self.memory[instr.address + 2])
dest = self.memory[instr.address + 3]
self._set_value(instr.p3_mode, dest, lhs * rhs)
self.rip += 4 # Length of the instruction
def _do_input(self, instr: Instruction) -> None:
if len(self.input_list) == 0:
raise InputInterrupt # No input, halt until an input is provided
value = int(self.input_list.pop(0))
param = self.memory[instr.address + 1]
self._set_value(instr.p1_mode, param, value)
self.rip += 2 # Length of the instruction
def _do_output(self, instr: Instruction) -> None:
value = self._get_value(instr.p1_mode, self.memory[instr.address + 1])
self.output_list.append(value)
self.rip += 2 # Length of the instruction
raise OutputInterrupt # Alert that we got an output to give
def _do_jump_if_true(self, instr: Instruction) -> None:
cond = self._get_value(instr.p1_mode, self.memory[instr.address + 1])
value = self._get_value(instr.p2_mode, self.memory[instr.address + 2])
if cond != 0:
self.rip = value
else:
self.rip += 3 # Length of the instruction
def _do_jump_if_false(self, instr: Instruction) -> None:
cond = self._get_value(instr.p1_mode, self.memory[instr.address + 1])
value = self._get_value(instr.p2_mode, self.memory[instr.address + 2])
if cond == 0:
self.rip = value
else:
self.rip += 3 # Length of the instruction
def _do_less_than(self, instr: Instruction) -> None:
lhs = self._get_value(instr.p1_mode, self.memory[instr.address + 1])
rhs = self._get_value(instr.p2_mode, self.memory[instr.address + 2])
dest = self.memory[instr.address + 3]
self._set_value(instr.p3_mode, dest, 1 if lhs < rhs else 0)
self.rip += 4 # Length of the instruction
def _do_equal_to(self, instr: Instruction) -> None:
lhs = self._get_value(instr.p1_mode, self.memory[instr.address + 1])
rhs = self._get_value(instr.p2_mode, self.memory[instr.address + 2])
dest = self.memory[instr.address + 3]
self._set_value(instr.p3_mode, dest, 1 if lhs == rhs else 0)
self.rip += 4 # Length of the instruction
def _do_change_relative_base(self, instr: Instruction) -> None:
value = self._get_value(instr.p1_mode, self.memory[instr.address + 1])
self.relative_base += value
self.rip += 2 # Length of the instruction
class Position(NamedTuple):
x: int
y: int
# Up, Right, Down, Left offsets
offsets = [Position(1, 0), Position(0, 1), Position(-1, 0), Position(0, -1)]
class Color(IntEnum):
BLACK = 0
WHITE = 1
def main() -> None:
memory = [int(n) for n in sys.stdin.read().split(",")]
painter = Computer(memory)
pos = Position(0, 0)
orientation = 0
painted: Dict[Position, Color] = {pos: Color.WHITE}
has_painted = False
while not painter.is_halted:
try:
painter.run()
except InputInterrupt:
painter.input_list.append(int(painted.get(pos, Color.BLACK)))
except OutputInterrupt:
if has_painted:
orientation += 1 if painter.output_list.pop(0) == 1 else -1
if orientation < 0:
orientation += len(offsets)
else:
orientation = orientation % len(offsets)
offset = offsets[orientation]
pos = Position(pos.x + offset.x, pos.y + offset.y)
else:
painted[pos] = Color(painter.output_list.pop(0))
has_painted = not has_painted
maxx, maxy = max(p.x for p in painted), max(p.y for p in painted)
minx, miny = min(p.x for p in painted), min(p.y for p in painted)
ans: List[List[str]] = []
for x in range(minx, maxx + 1):
ans.append([])
for y in range(miny, maxy + 1):
color = painted.get(Position(x, y), Color.BLACK)
ans[-1].append("" if color == Color.WHITE else " ")
lines = ["".join(l) for l in ans]
print("\n".join(reversed(lines))) # Seems like my coordinates are reversed
if __name__ == "__main__":
main()