diff --git a/2019/d13/ex2/ex2.py b/2019/d13/ex2/ex2.py new file mode 100755 index 0000000..9fb669f --- /dev/null +++ b/2019/d13/ex2/ex2.py @@ -0,0 +1,249 @@ +#!/usr/bin/env python + +import sys +from dataclasses import dataclass, field +from enum import IntEnum +from typing import Dict, Iterable, List, NamedTuple, Tuple, TypeVar + + +class ParameterMode(IntEnum): + POSITION = 0 # Acts on address + IMMEDIATE = 1 # Acts on the immediate value + RELATIVE = 2 # Acts on offset to relative base + + +class Instruction(NamedTuple): + address: int # The address of the instruction, for convenience + op: int # The opcode + p1_mode: ParameterMode # Which mode is the first parameter in + p2_mode: ParameterMode # Which mode is the second parameter in + p3_mode: ParameterMode # Which mode is the third parameter in + + +def lookup_ops(index: int, memory: List[int]) -> Instruction: + digits = list(map(int, str(memory[index]))) + a, b, c, d, e = [0] * (5 - len(digits)) + digits # Pad with default values + return Instruction( + address=index, + op=d * 10 + e, + p1_mode=ParameterMode(c), + p2_mode=ParameterMode(b), + p3_mode=ParameterMode(a), + ) + + +class InputInterrupt(Exception): + pass + + +class OutputInterrupt(Exception): + pass + + +@dataclass +class Computer: + memory: List[int] # Memory space + rip: int = 0 # Instruction pointer + input_list: List[int] = field(default_factory=list) + output_list: List[int] = field(default_factory=list) + is_halted: bool = field(default=False, init=False) + relative_base: int = field(default=0, init=False) + + def run(self) -> None: + while not self.is_halted: + self.run_single() + + def run_no_output_interrupt(self) -> None: + while not self.is_halted: + try: + self.run_single() + except OutputInterrupt: + continue + + def run_single(self): # Returns True when halted + instr = lookup_ops(self.rip, self.memory) + if instr.op == 99: # Halt + self.is_halted = True + elif instr.op == 1: # Sum + self._do_addition(instr) + elif instr.op == 2: # Multiplication + self._do_multiplication(instr) + elif instr.op == 3: # Load from input + self._do_input(instr) + elif instr.op == 4: # Store to output + self._do_output(instr) + elif instr.op == 5: # Jump if true + self._do_jump_if_true(instr) + elif instr.op == 6: # Jump if false + self._do_jump_if_false(instr) + elif instr.op == 7: # Less than + self._do_less_than(instr) + elif instr.op == 8: # Equal to + self._do_equal_to(instr) + elif instr.op == 9: # Change relative base + self._do_change_relative_base(instr) + else: + assert False # Sanity check + + def _fill_to_addres(self, address: int) -> None: + values = address - len(self.memory) + 1 + if values <= 0: + return + for __ in range(values): + self.memory.append(0) + + def _get_value(self, mode: ParameterMode, val: int) -> int: + if mode == ParameterMode.POSITION: + assert 0 <= val # Sanity check + self._fill_to_addres(val) + return self.memory[val] + elif mode == ParameterMode.RELATIVE: + val += self.relative_base + assert 0 <= val # Sanity check + self._fill_to_addres(val) + return self.memory[val] + assert mode == ParameterMode.IMMEDIATE # Sanity check + return val + + def _set_value(self, mode: ParameterMode, address: int, value: int) -> None: + if mode == ParameterMode.RELATIVE: + address += self.relative_base + else: + assert mode == ParameterMode.POSITION # Sanity check + + assert address >= 0 # Sanity check + self._fill_to_addres(address) + + self.memory[address] = value + + def _do_addition(self, instr: Instruction) -> None: + lhs = self._get_value(instr.p1_mode, self.memory[instr.address + 1]) + rhs = self._get_value(instr.p2_mode, self.memory[instr.address + 2]) + dest = self.memory[instr.address + 3] + + self._set_value(instr.p3_mode, dest, lhs + rhs) + + self.rip += 4 # Length of the instruction + + def _do_multiplication(self, instr: Instruction) -> None: + lhs = self._get_value(instr.p1_mode, self.memory[instr.address + 1]) + rhs = self._get_value(instr.p2_mode, self.memory[instr.address + 2]) + dest = self.memory[instr.address + 3] + + self._set_value(instr.p3_mode, dest, lhs * rhs) + + self.rip += 4 # Length of the instruction + + def _do_input(self, instr: Instruction) -> None: + if len(self.input_list) == 0: + raise InputInterrupt # No input, halt until an input is provided + + value = int(self.input_list.pop(0)) + param = self.memory[instr.address + 1] + + self._set_value(instr.p1_mode, param, value) + + self.rip += 2 # Length of the instruction + + def _do_output(self, instr: Instruction) -> None: + value = self._get_value(instr.p1_mode, self.memory[instr.address + 1]) + + self.output_list.append(value) + + self.rip += 2 # Length of the instruction + raise OutputInterrupt # Alert that we got an output to give + + def _do_jump_if_true(self, instr: Instruction) -> None: + cond = self._get_value(instr.p1_mode, self.memory[instr.address + 1]) + value = self._get_value(instr.p2_mode, self.memory[instr.address + 2]) + + if cond != 0: + self.rip = value + else: + self.rip += 3 # Length of the instruction + + def _do_jump_if_false(self, instr: Instruction) -> None: + cond = self._get_value(instr.p1_mode, self.memory[instr.address + 1]) + value = self._get_value(instr.p2_mode, self.memory[instr.address + 2]) + + if cond == 0: + self.rip = value + else: + self.rip += 3 # Length of the instruction + + def _do_less_than(self, instr: Instruction) -> None: + lhs = self._get_value(instr.p1_mode, self.memory[instr.address + 1]) + rhs = self._get_value(instr.p2_mode, self.memory[instr.address + 2]) + dest = self.memory[instr.address + 3] + + self._set_value(instr.p3_mode, dest, 1 if lhs < rhs else 0) + + self.rip += 4 # Length of the instruction + + def _do_equal_to(self, instr: Instruction) -> None: + lhs = self._get_value(instr.p1_mode, self.memory[instr.address + 1]) + rhs = self._get_value(instr.p2_mode, self.memory[instr.address + 2]) + dest = self.memory[instr.address + 3] + + self._set_value(instr.p3_mode, dest, 1 if lhs == rhs else 0) + + self.rip += 4 # Length of the instruction + + def _do_change_relative_base(self, instr: Instruction) -> None: + value = self._get_value(instr.p1_mode, self.memory[instr.address + 1]) + + self.relative_base += value + self.rip += 2 # Length of the instruction + + +class Tile(IntEnum): + EMPTY = 0 + WALL = 1 + BLOCK = 2 + PADDLE = 3 + BALL = 4 + + +def main() -> None: + memory = [int(n) for n in sys.stdin.read().split(",")] + memory[0] = 2 # Play for free + game = Computer(memory) + + T = TypeVar("T") + + def grouped(l: Iterable[T], n: int) -> Iterable[Tuple[T, ...]]: + return zip(*[iter(l)] * n) + + paddle_pos = None + ball_pos = None + score = None + output_num = 0 + while not game.is_halted: + try: + game.run() + except OutputInterrupt: + output_num += 1 + if output_num < 3: # Not processable yet + continue + x, y = game.output_list[0:2] + if x == -1 and y == 0: # Score display + score = game.output_list[2] + else: + tile_type = Tile(game.output_list[2]) + if tile_type == Tile.PADDLE: + paddle_pos = x + elif tile_type == Tile.BALL: + ball_pos = x + game.output_list.clear() # Remove processed tiles + output_num = 0 # Reset count for next output + except InputInterrupt: + assert paddle_pos is not None and ball_pos is not None # Sanity check + offset = ball_pos - paddle_pos + game.input_list.append(0 if offset == 0 else offset // abs(offset)) + + assert score is not None # Sanity check + print(score) + + +if __name__ == "__main__": + main()