2016: d22: ex2: add solution
This commit is contained in:
parent
69269e912b
commit
2cecebac87
1 changed files with 101 additions and 0 deletions
101
2016/d22/ex2/ex2.py
Executable file
101
2016/d22/ex2/ex2.py
Executable file
|
|
@ -0,0 +1,101 @@
|
||||||
|
#!/usr/bin/env python
|
||||||
|
|
||||||
|
import heapq
|
||||||
|
import sys
|
||||||
|
from collections.abc import Iterable
|
||||||
|
from typing import NamedTuple
|
||||||
|
|
||||||
|
|
||||||
|
class Point(NamedTuple):
|
||||||
|
x: int
|
||||||
|
y: int
|
||||||
|
|
||||||
|
|
||||||
|
class Filesystem(NamedTuple):
|
||||||
|
size: int
|
||||||
|
used: int
|
||||||
|
|
||||||
|
@property
|
||||||
|
def avail(self) -> int:
|
||||||
|
return self.size - self.used
|
||||||
|
|
||||||
|
|
||||||
|
def solve(input: str) -> int:
|
||||||
|
def parse_line(input: str) -> tuple[Point, Filesystem]:
|
||||||
|
raw_fs, raw_size, raw_used, raw_avail, _ = input.split()
|
||||||
|
size = int(raw_size.removesuffix("T"))
|
||||||
|
used = int(raw_used.removesuffix("T"))
|
||||||
|
avail = int(raw_avail.removesuffix("T"))
|
||||||
|
assert size == (used + avail) # Sanity check
|
||||||
|
*_, x, y = raw_fs.split("-")
|
||||||
|
return Point(int(x[1:]), int(y[1:])), Filesystem(size, used)
|
||||||
|
|
||||||
|
def parse(input: str) -> dict[Point, Filesystem]:
|
||||||
|
return {node: fs for node, fs in map(parse_line, input.splitlines()[2:])}
|
||||||
|
|
||||||
|
def neighbours(p: Point) -> Iterable[Point]:
|
||||||
|
for dx, dy in (
|
||||||
|
(-1, 0),
|
||||||
|
(1, 0),
|
||||||
|
(0, -1),
|
||||||
|
(0, 1),
|
||||||
|
):
|
||||||
|
yield Point(p.x + dx, p.y + dy)
|
||||||
|
|
||||||
|
def dijkstra(start: Point, end: Point, points: set[Point]) -> int:
|
||||||
|
# Priority queue of (distance, point)
|
||||||
|
queue = [(0, start)]
|
||||||
|
seen: set[Point] = set()
|
||||||
|
|
||||||
|
while len(queue) > 0:
|
||||||
|
dist, p = heapq.heappop(queue)
|
||||||
|
if p == end:
|
||||||
|
return dist
|
||||||
|
# We must have seen p with a smaller distance before
|
||||||
|
if p in seen:
|
||||||
|
continue
|
||||||
|
# First time encountering p, must be the smallest distance to it
|
||||||
|
seen.add(p)
|
||||||
|
# Add all neighbours to be visited
|
||||||
|
for n in neighbours(p):
|
||||||
|
if n not in points:
|
||||||
|
continue
|
||||||
|
heapq.heappush(queue, (dist + 1, n))
|
||||||
|
|
||||||
|
assert False # Sanity check
|
||||||
|
|
||||||
|
def dist(p: Point, other: Point) -> int:
|
||||||
|
return abs(p.x - other.x) + abs(p.y - other.y)
|
||||||
|
|
||||||
|
def has_angle(p: Point, other: Point) -> int:
|
||||||
|
return p.x != other.x and p.y != other.y
|
||||||
|
|
||||||
|
def data_migration(start: Point, end: Point) -> int:
|
||||||
|
# Moving the data once is a 5 step move, unless it is on an angle, where it is 3
|
||||||
|
# Assumes there's no wall between either points
|
||||||
|
return 5 * dist(start, end) - 2 * has_angle(start, end)
|
||||||
|
|
||||||
|
df = parse(input)
|
||||||
|
# The data moves from the goal to us, hence `start` and `end` are "reversed"
|
||||||
|
start = max(p for p in df.keys() if p.y == 0)
|
||||||
|
end = Point(0, 0)
|
||||||
|
# The "hole" must be used to migrate the data to us
|
||||||
|
hole = next(p for p, fs in df.items() if fs.used == 0)
|
||||||
|
# The "walls" are nodes which are too big to move, effectively blocking us
|
||||||
|
walls = {p for p, fs in df.items() if fs.used > df[hole].avail}
|
||||||
|
accessible = df.keys() - walls
|
||||||
|
|
||||||
|
return min(
|
||||||
|
dijkstra(hole, n, accessible) + 1 + data_migration(n, end)
|
||||||
|
for n in neighbours(start)
|
||||||
|
if n in accessible
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def main() -> None:
|
||||||
|
input = sys.stdin.read()
|
||||||
|
print(solve(input))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
Loading…
Add table
Add a link
Reference in a new issue