2019: d15: ex1: add solution

This commit is contained in:
Bruno BELANYI 2019-12-15 14:10:54 +01:00
parent dd872a9fcf
commit 1b4c335a02

315
2019/d15/ex1/ex1.py Executable file
View file

@ -0,0 +1,315 @@
#!/usr/bin/env python
import heapq
import sys
from dataclasses import dataclass, field
from enum import Enum, IntEnum, auto
from typing import List, NamedTuple, Optional, Set
class ParameterMode(IntEnum):
POSITION = 0 # Acts on address
IMMEDIATE = 1 # Acts on the immediate value
RELATIVE = 2 # Acts on offset to relative base
class Instruction(NamedTuple):
address: int # The address of the instruction, for convenience
op: int # The opcode
p1_mode: ParameterMode # Which mode is the first parameter in
p2_mode: ParameterMode # Which mode is the second parameter in
p3_mode: ParameterMode # Which mode is the third parameter in
def lookup_ops(index: int, memory: List[int]) -> Instruction:
digits = list(map(int, str(memory[index])))
a, b, c, d, e = [0] * (5 - len(digits)) + digits # Pad with default values
return Instruction(
address=index,
op=d * 10 + e,
p1_mode=ParameterMode(c),
p2_mode=ParameterMode(b),
p3_mode=ParameterMode(a),
)
class InputInterrupt(Exception):
pass
class OutputInterrupt(Exception):
pass
@dataclass
class Computer:
memory: List[int] # Memory space
rip: int = 0 # Instruction pointer
input_list: List[int] = field(default_factory=list)
output_list: List[int] = field(default_factory=list)
is_halted: bool = field(default=False, init=False)
relative_base: int = field(default=0, init=False)
def run(self) -> None:
while not self.is_halted:
self.run_single()
def run_no_output_interrupt(self) -> None:
while not self.is_halted:
try:
self.run_single()
except OutputInterrupt:
continue
def run_single(self): # Returns True when halted
instr = lookup_ops(self.rip, self.memory)
if instr.op == 99: # Halt
self.is_halted = True
elif instr.op == 1: # Sum
self._do_addition(instr)
elif instr.op == 2: # Multiplication
self._do_multiplication(instr)
elif instr.op == 3: # Load from input
self._do_input(instr)
elif instr.op == 4: # Store to output
self._do_output(instr)
elif instr.op == 5: # Jump if true
self._do_jump_if_true(instr)
elif instr.op == 6: # Jump if false
self._do_jump_if_false(instr)
elif instr.op == 7: # Less than
self._do_less_than(instr)
elif instr.op == 8: # Equal to
self._do_equal_to(instr)
elif instr.op == 9: # Change relative base
self._do_change_relative_base(instr)
else:
assert False # Sanity check
def _fill_to_addres(self, address: int) -> None:
values = address - len(self.memory) + 1
if values <= 0:
return
for __ in range(values):
self.memory.append(0)
def _get_value(self, mode: ParameterMode, val: int) -> int:
if mode == ParameterMode.POSITION:
assert 0 <= val # Sanity check
self._fill_to_addres(val)
return self.memory[val]
elif mode == ParameterMode.RELATIVE:
val += self.relative_base
assert 0 <= val # Sanity check
self._fill_to_addres(val)
return self.memory[val]
assert mode == ParameterMode.IMMEDIATE # Sanity check
return val
def _set_value(self, mode: ParameterMode, address: int, value: int) -> None:
if mode == ParameterMode.RELATIVE:
address += self.relative_base
else:
assert mode == ParameterMode.POSITION # Sanity check
assert address >= 0 # Sanity check
self._fill_to_addres(address)
self.memory[address] = value
def _do_addition(self, instr: Instruction) -> None:
lhs = self._get_value(instr.p1_mode, self.memory[instr.address + 1])
rhs = self._get_value(instr.p2_mode, self.memory[instr.address + 2])
dest = self.memory[instr.address + 3]
self._set_value(instr.p3_mode, dest, lhs + rhs)
self.rip += 4 # Length of the instruction
def _do_multiplication(self, instr: Instruction) -> None:
lhs = self._get_value(instr.p1_mode, self.memory[instr.address + 1])
rhs = self._get_value(instr.p2_mode, self.memory[instr.address + 2])
dest = self.memory[instr.address + 3]
self._set_value(instr.p3_mode, dest, lhs * rhs)
self.rip += 4 # Length of the instruction
def _do_input(self, instr: Instruction) -> None:
if len(self.input_list) == 0:
raise InputInterrupt # No input, halt until an input is provided
value = int(self.input_list.pop(0))
param = self.memory[instr.address + 1]
self._set_value(instr.p1_mode, param, value)
self.rip += 2 # Length of the instruction
def _do_output(self, instr: Instruction) -> None:
value = self._get_value(instr.p1_mode, self.memory[instr.address + 1])
self.output_list.append(value)
self.rip += 2 # Length of the instruction
raise OutputInterrupt # Alert that we got an output to give
def _do_jump_if_true(self, instr: Instruction) -> None:
cond = self._get_value(instr.p1_mode, self.memory[instr.address + 1])
value = self._get_value(instr.p2_mode, self.memory[instr.address + 2])
if cond != 0:
self.rip = value
else:
self.rip += 3 # Length of the instruction
def _do_jump_if_false(self, instr: Instruction) -> None:
cond = self._get_value(instr.p1_mode, self.memory[instr.address + 1])
value = self._get_value(instr.p2_mode, self.memory[instr.address + 2])
if cond == 0:
self.rip = value
else:
self.rip += 3 # Length of the instruction
def _do_less_than(self, instr: Instruction) -> None:
lhs = self._get_value(instr.p1_mode, self.memory[instr.address + 1])
rhs = self._get_value(instr.p2_mode, self.memory[instr.address + 2])
dest = self.memory[instr.address + 3]
self._set_value(instr.p3_mode, dest, 1 if lhs < rhs else 0)
self.rip += 4 # Length of the instruction
def _do_equal_to(self, instr: Instruction) -> None:
lhs = self._get_value(instr.p1_mode, self.memory[instr.address + 1])
rhs = self._get_value(instr.p2_mode, self.memory[instr.address + 2])
dest = self.memory[instr.address + 3]
self._set_value(instr.p3_mode, dest, 1 if lhs == rhs else 0)
self.rip += 4 # Length of the instruction
def _do_change_relative_base(self, instr: Instruction) -> None:
value = self._get_value(instr.p1_mode, self.memory[instr.address + 1])
self.relative_base += value
self.rip += 2 # Length of the instruction
class Movement(IntEnum):
NORTH = 1
SOUTH = 2
WEST = 3
EAST = 4
class StatusCode(IntEnum):
BLOCKED = 0
SUCCESS = 1
ON_TANK = 2
class BlockType(Enum):
WALL = auto()
HALLWAY = auto()
OXYGEN_TANK = auto()
class Coordinate(NamedTuple):
x: int
y: int
@dataclass
class GraphNode:
memory_state: Optional[List[int]] # Only walls have no need for the memory state
block_type: BlockType
parent: Optional[Coordinate] # Only the root of the exploration has no parent
def coord_plus_dir(c: Coordinate, d: Movement) -> Coordinate:
offset = {
Movement.NORTH: Coordinate(0, 1),
Movement.SOUTH: Coordinate(0, -1),
Movement.WEST: Coordinate(-1, 0),
Movement.EAST: Coordinate(1, 0),
}
return Coordinate(*(a + b for (a, b) in zip(c, offset[d])))
def move_to_opposite(d: Movement) -> Movement:
if d == Movement.NORTH:
return Movement.SOUTH
elif d == Movement.SOUTH:
return Movement.NORTH
elif d == Movement.WEST:
return Movement.EAST
else:
return Movement.WEST
def main() -> None:
memory = [int(n) for n in sys.stdin.read().split(",")]
droid = Computer(memory)
block_map = {Coordinate(0, 0): BlockType.HALLWAY}
def dfs(p: Coordinate, direction: Movement) -> None:
end_coord = coord_plus_dir(p, direction)
if end_coord in block_map:
return # Nothing to do
droid.input_list.append(int(direction))
try:
droid.run()
except OutputInterrupt:
status = StatusCode(droid.output_list.pop(0))
if status == StatusCode.BLOCKED:
block_map[end_coord] = BlockType.WALL
return # Don't need to backtrack
block_map[end_coord] = (
BlockType.OXYGEN_TANK
if status == StatusCode.ON_TANK
else BlockType.HALLWAY
)
for d in Movement:
dfs(end_coord, d)
droid.input_list.append(int(move_to_opposite(direction)))
try:
droid.run()
except OutputInterrupt:
droid.output_list.pop(0)
for direction in Movement:
dfs(Coordinate(0, 0), direction)
assert len(droid.input_list) == 0 and len(droid.output_list) == 0 # Sanity check
block_map = {p: t for p, t in block_map.items() if t != BlockType.WALL}
oxygen_gen = (
pos for pos, block in block_map.items() if block == BlockType.OXYGEN_TANK
)
oxygen_pos = next(oxygen_gen)
assert next(oxygen_gen, None) is None # Sanity check
seen: Set[Coordinate] = set()
to_visit = [(0, oxygen_pos)]
def find_shortest() -> int:
while True:
dist, pos = heapq.heappop(to_visit)
if pos == Coordinate(0, 0):
return dist
if pos in seen:
continue
if pos not in block_map:
continue
seen.add(pos)
for d in Movement:
new_pos = coord_plus_dir(pos, d)
heapq.heappush(to_visit, (dist + 1, new_pos))
print(find_shortest())
if __name__ == "__main__":
main()