125 lines
3.8 KiB
Python
125 lines
3.8 KiB
Python
|
#!/usr/bin/env python
|
||
|
|
||
|
import enum
|
||
|
import heapq
|
||
|
import sys
|
||
|
from collections import defaultdict
|
||
|
from typing import Iterator, NamedTuple
|
||
|
|
||
|
|
||
|
class Point(NamedTuple):
|
||
|
x: int
|
||
|
y: int
|
||
|
|
||
|
def neighbours(self) -> Iterator["Point"]:
|
||
|
for dx, dy in (
|
||
|
(-1, 0),
|
||
|
(1, 0),
|
||
|
(0, -1),
|
||
|
(0, 1),
|
||
|
):
|
||
|
yield Point(self.x + dx, self.y + dy)
|
||
|
|
||
|
|
||
|
class LevelDelta(enum.IntEnum):
|
||
|
PATH = 0
|
||
|
INNER_GATE = 1
|
||
|
OUTER_GATE = -1
|
||
|
|
||
|
|
||
|
Graph = dict[Point, set[tuple[Point, LevelDelta]]]
|
||
|
|
||
|
|
||
|
def solve(input: str) -> int:
|
||
|
def post_process_gates(
|
||
|
letters: dict[Point, str], paths: set[Point]
|
||
|
) -> dict[str, set[Point]]:
|
||
|
res: dict[str, set[Point]] = defaultdict(set)
|
||
|
for p1, first in letters.items():
|
||
|
for dx, dy in ((0, 1), (1, 0)):
|
||
|
p2 = Point(p1.x + dx, p1.y + dy)
|
||
|
if p2 not in letters:
|
||
|
continue
|
||
|
gate = first + letters[p2]
|
||
|
p0 = Point(p1.x - dx, p1.y - dy)
|
||
|
p3 = Point(p2.x + dx, p2.y + dy)
|
||
|
res[gate] |= {p0, p3} & paths
|
||
|
return res
|
||
|
|
||
|
def to_graph(paths: set[Point], gates: dict[str, set[Point]]) -> Graph:
|
||
|
res: dict[Point, set[tuple[Point, LevelDelta]]] = defaultdict(set)
|
||
|
|
||
|
for p in paths:
|
||
|
res[p] |= {(n, LevelDelta.PATH) for n in p.neighbours() if n in paths}
|
||
|
|
||
|
outer_x = {min(p.x for p in paths), max(p.x for p in paths)}
|
||
|
outer_y = {min(p.y for p in paths), max(p.y for p in paths)}
|
||
|
|
||
|
for gate, points in gates.items():
|
||
|
if len(points) == 1:
|
||
|
assert gate in ("AA", "ZZ") # Sanity check
|
||
|
continue
|
||
|
for p in points:
|
||
|
other = next(iter(other for other in points if other != p))
|
||
|
delta = (
|
||
|
LevelDelta.OUTER_GATE
|
||
|
if p.x in outer_x or p.y in outer_y
|
||
|
else LevelDelta.INNER_GATE
|
||
|
)
|
||
|
res[p].add((other, delta))
|
||
|
return res
|
||
|
|
||
|
def parse(input: list[str]) -> tuple[Graph, Point, Point]:
|
||
|
letters: dict[Point, str] = {}
|
||
|
paths: set[Point] = set()
|
||
|
|
||
|
for x, line in enumerate(input):
|
||
|
for y, c in enumerate(line):
|
||
|
if c == "#" or c == " ":
|
||
|
continue
|
||
|
p = Point(x, y)
|
||
|
if c == ".":
|
||
|
paths.add(p)
|
||
|
continue
|
||
|
letters[p] = c
|
||
|
|
||
|
gates = post_process_gates(letters, paths)
|
||
|
graph = to_graph(paths, post_process_gates(letters, paths))
|
||
|
return graph, next(iter(gates["AA"])), next(iter(gates["ZZ"]))
|
||
|
|
||
|
def djikstra(start: Point, end: Point, graph: Graph) -> int:
|
||
|
# Priority queue of (distance, point, level)
|
||
|
queue = [(0, start, 0)]
|
||
|
seen: set[tuple[Point, int]] = set()
|
||
|
|
||
|
while len(queue) > 0:
|
||
|
dist, p, level = heapq.heappop(queue)
|
||
|
if p == end and level == 0:
|
||
|
return dist
|
||
|
# We must have seen p at this level with a smaller distance before
|
||
|
if (p, level) in seen:
|
||
|
continue
|
||
|
# First time encountering p at this level, must be the smallest distance to it
|
||
|
seen.add((p, level))
|
||
|
# Add all neighbours to be visited
|
||
|
for n, delta in graph[p]:
|
||
|
n_level = level + delta
|
||
|
# Don't attempt to go out when at the most outer level
|
||
|
if n_level < 0:
|
||
|
continue
|
||
|
heapq.heappush(queue, (dist + 1, n, n_level))
|
||
|
|
||
|
assert False # Sanity check
|
||
|
|
||
|
graph, start, end = parse(input.splitlines())
|
||
|
return djikstra(start, end, graph)
|
||
|
|
||
|
|
||
|
def main() -> None:
|
||
|
input = sys.stdin.read()
|
||
|
print(solve(input))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|