126 lines
3.8 KiB
Python
126 lines
3.8 KiB
Python
|
#!/usr/bin/env python
|
||
|
|
||
|
import copy
|
||
|
import random
|
||
|
import sys
|
||
|
from collections import Counter, defaultdict
|
||
|
from typing import cast
|
||
|
|
||
|
Graph = dict[str, Counter[str]]
|
||
|
|
||
|
|
||
|
def solve(input: list[str]) -> int:
|
||
|
def parse(input: list[str]) -> Graph:
|
||
|
res: Graph = defaultdict(Counter)
|
||
|
|
||
|
for line in input:
|
||
|
node, destinations = line.split(": ")
|
||
|
for dest in destinations.split():
|
||
|
res[node][dest] = 1
|
||
|
res[dest][node] = 1
|
||
|
|
||
|
return res
|
||
|
|
||
|
def contract_edge(graph: Graph, s: str, t: str) -> None:
|
||
|
assert s != t # Sanity check
|
||
|
assert s in graph # Sanity check
|
||
|
assert t in graph # Sanity check
|
||
|
|
||
|
# Merge the edges
|
||
|
graph[s] += graph[t]
|
||
|
# Don't count the potential t-s edge
|
||
|
del graph[s][s]
|
||
|
# Remove t from the graph
|
||
|
for other in graph[t].keys():
|
||
|
del graph[other][t]
|
||
|
del graph[t]
|
||
|
# Update the neighbours values
|
||
|
for other, v in graph[s].items():
|
||
|
graph[other][s] = v
|
||
|
|
||
|
# Stoer-Wagner algorithm
|
||
|
def min_cut_exact(graph: Graph) -> tuple[set[str], set[str]]:
|
||
|
def phase(graph: Graph) -> tuple[str, str, int]:
|
||
|
assert len(graph) >= 2 # Sanity check
|
||
|
|
||
|
candidates = set(graph.keys())
|
||
|
start = candidates.pop()
|
||
|
found = [start]
|
||
|
cut_weight: list[int] = []
|
||
|
|
||
|
while candidates:
|
||
|
(weight, node) = max(
|
||
|
(sum(graph[node][other] for other in found), node)
|
||
|
for node in candidates
|
||
|
)
|
||
|
candidates.discard(node)
|
||
|
found.append(node)
|
||
|
cut_weight.append(weight)
|
||
|
|
||
|
return found[-2], found[-1], cut_weight[-1]
|
||
|
|
||
|
partition: set[str] = set()
|
||
|
g = copy.deepcopy(graph)
|
||
|
|
||
|
# Initialize our best weight/parition
|
||
|
best_weight = cast(int, float("inf"))
|
||
|
best_partition = set(partition)
|
||
|
|
||
|
while len(g) > 1:
|
||
|
s, t, w = phase(g)
|
||
|
partition.add(t)
|
||
|
contract_edge(g, s, t)
|
||
|
if w < best_weight:
|
||
|
best_weight = w
|
||
|
best_partition = set(partition)
|
||
|
|
||
|
return best_partition, graph.keys() - best_partition
|
||
|
|
||
|
def min_cut_karger(graph: Graph, target: int) -> tuple[set[str], set[str]]:
|
||
|
assert len(graph) >= 2 # Sanity check
|
||
|
|
||
|
original_edges = [
|
||
|
(source, dest)
|
||
|
for source, destinations in graph.items()
|
||
|
for dest in destinations
|
||
|
if source < dest
|
||
|
]
|
||
|
|
||
|
while True:
|
||
|
g = copy.deepcopy(graph)
|
||
|
contracted = {v: v for v in graph}
|
||
|
while len(g) > 2:
|
||
|
s, t = (contracted[v] for v in random.choice(original_edges))
|
||
|
if s == t:
|
||
|
continue
|
||
|
contract_edge(g, s, t)
|
||
|
# Hacky union-find-ish algorithm, for laziness
|
||
|
for k, v in contracted.items():
|
||
|
if v != t:
|
||
|
continue
|
||
|
contracted[k] = s
|
||
|
# Pick a partition at random here
|
||
|
node = next(iter(g))
|
||
|
# Check that we met our target
|
||
|
if g[node].total() > target:
|
||
|
continue
|
||
|
partition = {n for n, parent in contracted.items() if parent == node}
|
||
|
return partition, graph.keys() - partition
|
||
|
|
||
|
graph = parse(input)
|
||
|
# The exact algorithm is very slow on big graphs, at which point Karger's algorithm is better
|
||
|
if len(graph) < 100:
|
||
|
left, right = min_cut_exact(graph)
|
||
|
else:
|
||
|
left, right = min_cut_karger(graph, 3)
|
||
|
return len(left) * len(right)
|
||
|
|
||
|
|
||
|
def main() -> None:
|
||
|
input = sys.stdin.read().splitlines()
|
||
|
print(solve(input))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|