165 lines
5.2 KiB
Python
165 lines
5.2 KiB
Python
|
#!/usr/bin/env python
|
||
|
|
||
|
import dataclasses
|
||
|
import enum
|
||
|
import sys
|
||
|
from collections import defaultdict, deque
|
||
|
from collections.abc import Iterator
|
||
|
from typing import NamedTuple
|
||
|
|
||
|
|
||
|
class Point(NamedTuple):
|
||
|
x: int
|
||
|
y: int
|
||
|
|
||
|
def __add__(self, other):
|
||
|
if not isinstance(other, Point):
|
||
|
return NotImplemented
|
||
|
return Point(self.x + other.x, self.y + other.y)
|
||
|
|
||
|
def __sub__(self, other):
|
||
|
if not isinstance(other, Point):
|
||
|
return NotImplemented
|
||
|
return Point(self.x - other.x, self.y - other.y)
|
||
|
|
||
|
|
||
|
class Direction(str, enum.Enum):
|
||
|
UP = "^"
|
||
|
DOWN = "v"
|
||
|
LEFT = "<"
|
||
|
RIGHT = ">"
|
||
|
|
||
|
def to_delta(self) -> Point:
|
||
|
match self:
|
||
|
case Direction.UP:
|
||
|
return Point(-1, 0)
|
||
|
case Direction.DOWN:
|
||
|
return Point(1, 0)
|
||
|
case Direction.LEFT:
|
||
|
return Point(0, -1)
|
||
|
case Direction.RIGHT:
|
||
|
return Point(0, 1)
|
||
|
|
||
|
|
||
|
@dataclasses.dataclass
|
||
|
class ValleyMap:
|
||
|
start: Point
|
||
|
goal: Point
|
||
|
valley_corners: tuple[Point, Point]
|
||
|
tornadoes: dict[Point, Direction]
|
||
|
|
||
|
@classmethod
|
||
|
def from_input(cls, input: list[str]) -> "ValleyMap":
|
||
|
tornadoes: dict[Point, Direction] = {}
|
||
|
for x, line in enumerate(input, start=1):
|
||
|
for y, c in enumerate(line, start=1):
|
||
|
if c in ("#", "."):
|
||
|
continue
|
||
|
tornadoes[Point(x, y)] = Direction(c)
|
||
|
return cls(
|
||
|
# Start position is always above the upper left corner of valley
|
||
|
start=Point(1, 2),
|
||
|
# Goal position is always under the lower left corner of valley
|
||
|
goal=Point(len(input), len(input[0]) - 1),
|
||
|
# Valley is surrounded by walls, except entrance and exit
|
||
|
valley_corners=(Point(2, 2), Point(len(input) - 1, len(input[0]) - 1)),
|
||
|
tornadoes=tornadoes,
|
||
|
)
|
||
|
|
||
|
def _is_in_valley(self, p: Point) -> bool:
|
||
|
# Valley also includes start/end
|
||
|
if p in (self.start, self.goal):
|
||
|
return True
|
||
|
# Otherwise, just do a bounds check for inside the walls
|
||
|
((minx, miny), (maxx, maxy)) = self.valley_corners
|
||
|
return (minx <= p.x <= maxx) and (miny <= p.y <= maxy)
|
||
|
|
||
|
def _wrap_tornado(self, p: Point) -> Point:
|
||
|
if self._is_in_valley(p):
|
||
|
return p
|
||
|
x, y = p
|
||
|
h = self.valley_corners[1].x - self.valley_corners[0].x + 1
|
||
|
w = self.valley_corners[1].y - self.valley_corners[0].y + 1
|
||
|
if x == 1:
|
||
|
x += h
|
||
|
if y == 1:
|
||
|
y += w
|
||
|
if x > self.valley_corners[1].x:
|
||
|
x -= h
|
||
|
if y > self.valley_corners[1].y:
|
||
|
y -= w
|
||
|
return Point(x, y)
|
||
|
|
||
|
def navigate(self) -> int:
|
||
|
TornadoesMap = dict[Point, list[Direction]]
|
||
|
|
||
|
def move_tornadoes(map: TornadoesMap) -> dict[Point, list[Direction]]:
|
||
|
res: dict[Point, list[Direction]] = defaultdict(list)
|
||
|
for p, tornadoes in map.items():
|
||
|
for t in tornadoes:
|
||
|
new_pos = self._wrap_tornado(p + t.to_delta())
|
||
|
res[new_pos].append(t)
|
||
|
return dict(res)
|
||
|
|
||
|
def moves(p: Point) -> Iterator[Point]:
|
||
|
yield p
|
||
|
for dx, dy in ((-1, 0), (1, 0), (0, -1), (0, 1)):
|
||
|
yield p + Point(dx, dy)
|
||
|
|
||
|
def bfs(
|
||
|
start: Point, goal: Point, tornadoes: TornadoesMap
|
||
|
) -> tuple[int, TornadoesMap]:
|
||
|
# Do a BFS to find the fastest route
|
||
|
queue: deque[tuple[int, Point]] = deque([(0, start)])
|
||
|
seen: set[tuple[int, Point]] = set()
|
||
|
tornado_history = [tornadoes]
|
||
|
while queue:
|
||
|
dist, pos = queue.popleft()
|
||
|
# If goal found, return total distance
|
||
|
if pos == goal:
|
||
|
return dist, tornado_history[dist]
|
||
|
# Check that we don't do redundant work
|
||
|
if (dist, pos) in seen:
|
||
|
continue
|
||
|
seen.add((dist, pos))
|
||
|
if len(tornado_history) <= (dist + 1):
|
||
|
tornado_history.append(move_tornadoes(tornado_history[-1]))
|
||
|
for new_pos in moves(pos):
|
||
|
# Can't move into the walls, but can move in start/end
|
||
|
if not self._is_in_valley(new_pos):
|
||
|
continue
|
||
|
# Can't occupy same space as tornadoes
|
||
|
if new_pos in tornado_history[dist + 1]:
|
||
|
continue
|
||
|
# Enqueue this move to the search space
|
||
|
queue.append((dist + 1, new_pos))
|
||
|
assert False # Sanity check
|
||
|
|
||
|
tornadoes = {p: [t] for p, t in self.tornadoes.items()}
|
||
|
total = 0
|
||
|
for start, end in (
|
||
|
# First travel
|
||
|
(self.start, self.goal),
|
||
|
# Back for snacks
|
||
|
(self.goal, self.start),
|
||
|
# Second travel
|
||
|
(self.start, self.goal),
|
||
|
):
|
||
|
dist, tornadoes = bfs(start, end, tornadoes)
|
||
|
total += dist
|
||
|
return total
|
||
|
|
||
|
|
||
|
def solve(input: list[str]) -> int:
|
||
|
valley = ValleyMap.from_input(input)
|
||
|
return valley.navigate()
|
||
|
|
||
|
|
||
|
def main() -> None:
|
||
|
input = sys.stdin.read().splitlines()
|
||
|
print(solve(input))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|