advent-of-code/2019/d07/ex1/ex1.py

260 lines
8.4 KiB
Python
Raw Normal View History

2019-12-09 17:43:02 +01:00
#!/usr/bin/env python
import itertools
import sys
from copy import deepcopy
from dataclasses import dataclass
from enum import IntEnum
from typing import Callable, List, NamedTuple
class ParameterMode(IntEnum):
POSITION = 0 # Acts on address
IMMEDIATE = 1 # Acts on the immediate value
class Instruction(NamedTuple):
address: int # The address of the instruction, for convenience
op: int # The opcode
p1_mode: ParameterMode # Which mode is the first parameter in
p2_mode: ParameterMode # Which mode is the second parameter in
p3_mode: ParameterMode # Which mode is the third parameter in
def lookup_ops(index: int, memory: List[int]) -> Instruction:
digits = list(map(int, str(memory[index])))
a, b, c, d, e = [0] * (5 - len(digits)) + digits # Pad with default values
return Instruction(
address=index,
op=d * 10 + e,
p1_mode=ParameterMode(c),
p2_mode=ParameterMode(b),
p3_mode=ParameterMode(a),
)
@dataclass
class Computer:
memory: List[int] # Memory space
rip: int = 0 # Instruction pointer
read_input: Callable[[], str] = input
print_output: Callable[[int], None] = print
def run(self) -> None:
is_halted = self.run_single()
while not is_halted:
is_halted = self.run_single()
def run_single(self) -> bool: # Returns True when halted
instr = lookup_ops(self.rip, self.memory)
if instr.op == 99: # Halt
return True # Halted
elif instr.op == 1: # Sum
self.do_addition(instr)
elif instr.op == 2: # Multiplication
self.do_multiplication(instr)
elif instr.op == 3: # Load from input
self.do_input(instr)
elif instr.op == 4: # Store to output
self.do_output(instr)
elif instr.op == 5: # Jump if true
self.do_jump_if_true(instr)
elif instr.op == 6: # Jump if false
self.do_jump_if_false(instr)
elif instr.op == 7: # Less than
self.do_less_than(instr)
elif instr.op == 8: # Equal to
self.do_equal_to(instr)
else:
assert False # Sanity check
return False # Not halted
def do_addition(self, instr: Instruction) -> None:
lhs, rhs, dest = self.memory[instr.address + 1 : instr.address + 4]
if instr.p1_mode == ParameterMode.POSITION:
lhs = self.memory[lhs]
else:
assert instr.p1_mode == ParameterMode.IMMEDIATE # Sanity check
if instr.p2_mode == ParameterMode.POSITION:
rhs = self.memory[rhs]
else:
assert instr.p2_mode == ParameterMode.IMMEDIATE # Sanity check
assert instr.p3_mode == ParameterMode.POSITION # Sanity check
self.memory[dest] = lhs + rhs
self.rip += 4 # Length of the instruction
def do_multiplication(self, instr: Instruction) -> None:
lhs, rhs, dest = self.memory[instr.address + 1 : instr.address + 4]
if instr.p1_mode == ParameterMode.POSITION:
lhs = self.memory[lhs]
else:
assert instr.p1_mode == ParameterMode.IMMEDIATE # Sanity check
if instr.p2_mode == ParameterMode.POSITION:
rhs = self.memory[rhs]
else:
assert instr.p2_mode == ParameterMode.IMMEDIATE # Sanity check
assert instr.p3_mode == ParameterMode.POSITION # Sanity check
self.memory[dest] = lhs * rhs
self.rip += 4 # Length of the instruction
def do_input(self, instr: Instruction) -> None:
value = int(self.read_input())
param = self.memory[instr.address + 1]
assert instr.p1_mode == ParameterMode.POSITION # Sanity check
self.memory[param] = value
self.rip += 2 # Length of the instruction
def do_output(self, instr: Instruction) -> None:
value = self.memory[instr.address + 1]
if instr.p1_mode == ParameterMode.POSITION:
value = self.memory[value]
else:
assert instr.p1_mode == ParameterMode.IMMEDIATE # Sanity check
self.print_output(value)
self.rip += 2 # Length of the instruction
def do_jump_if_true(self, instr: Instruction) -> None:
cond, value = self.memory[instr.address + 1 : instr.address + 3]
if instr.p1_mode == ParameterMode.POSITION:
cond = self.memory[cond]
else:
assert instr.p1_mode == ParameterMode.IMMEDIATE # Sanity check
if instr.p2_mode == ParameterMode.POSITION:
value = self.memory[value]
else:
assert instr.p2_mode == ParameterMode.IMMEDIATE # Sanity check
if cond != 0:
self.rip = value
else:
self.rip += 3 # Length of the instruction
def do_jump_if_false(self, instr: Instruction) -> None:
cond, value = self.memory[instr.address + 1 : instr.address + 3]
if instr.p1_mode == ParameterMode.POSITION:
cond = self.memory[cond]
else:
assert instr.p1_mode == ParameterMode.IMMEDIATE # Sanity check
if instr.p2_mode == ParameterMode.POSITION:
value = self.memory[value]
else:
assert instr.p2_mode == ParameterMode.IMMEDIATE # Sanity check
if cond == 0:
self.rip = value
else:
self.rip += 3 # Length of the instruction
def do_less_than(self, instr: Instruction) -> None:
lhs, rhs, dest = self.memory[instr.address + 1 : instr.address + 4]
if instr.p1_mode == ParameterMode.POSITION:
lhs = self.memory[lhs]
else:
assert instr.p1_mode == ParameterMode.IMMEDIATE # Sanity check
if instr.p2_mode == ParameterMode.POSITION:
rhs = self.memory[rhs]
else:
assert instr.p2_mode == ParameterMode.IMMEDIATE # Sanity check
assert instr.p3_mode == ParameterMode.POSITION # Sanity check
self.memory[dest] = 1 if lhs < rhs else 0
self.rip += 4 # Length of the instruction
def do_equal_to(self, instr: Instruction) -> None:
lhs, rhs, dest = self.memory[instr.address + 1 : instr.address + 4]
if instr.p1_mode == ParameterMode.POSITION:
lhs = self.memory[lhs]
else:
assert instr.p1_mode == ParameterMode.IMMEDIATE # Sanity check
if instr.p2_mode == ParameterMode.POSITION:
rhs = self.memory[rhs]
else:
assert instr.p2_mode == ParameterMode.IMMEDIATE # Sanity check
assert instr.p3_mode == ParameterMode.POSITION # Sanity check
self.memory[dest] = 1 if lhs == rhs else 0
self.rip += 4 # Length of the instruction
def main() -> None:
def get_input_fun(phase: int, last_output: List[int]) -> Callable[[], str]:
has_been_called = False
def _input() -> str:
nonlocal has_been_called
if has_been_called:
return str(last_output.pop(0))
has_been_called = True
return str(phase)
return _input
memory = [int(n) for n in sys.stdin.read().split(",")]
max = 0
ans = tuple(-1 for __ in range(5))
for a, b, c, d, e in itertools.permutations(range(5)):
amp1 = Computer(deepcopy(memory))
amp1_output: List[int] = []
amp1.read_input = get_input_fun(a, [0])
amp1.print_output = lambda x: amp1_output.append(int(x))
amp2 = Computer(deepcopy(memory))
amp2_output: List[int] = []
amp2.read_input = get_input_fun(b, amp1_output)
amp2.print_output = lambda x: amp2_output.append(int(x))
amp3 = Computer(deepcopy(memory))
amp3_output: List[int] = []
amp3.read_input = get_input_fun(c, amp2_output)
amp3.print_output = lambda x: amp3_output.append(int(x))
amp4 = Computer(deepcopy(memory))
amp4_output: List[int] = []
amp4.read_input = get_input_fun(d, amp3_output)
amp4.print_output = lambda x: amp4_output.append(int(x))
amp5 = Computer(deepcopy(memory))
amp5_output: List[int] = []
amp5.read_input = get_input_fun(e, amp4_output)
amp5.print_output = lambda x: amp5_output.append(int(x))
amp1.run()
amp2.run()
amp3.run()
amp4.run()
amp5.run()
res = amp5_output.pop(0)
if res > max:
max = res
ans = (a, b, c, d, e)
print(f"Max: {max}, res: {ans}")
print(f"Final one: {max}, with {ans}")
if __name__ == "__main__":
main()