97 lines
2.7 KiB
Python
97 lines
2.7 KiB
Python
|
#!/usr/bin/env python
|
||
|
|
||
|
import dataclasses
|
||
|
import enum
|
||
|
import sys
|
||
|
|
||
|
|
||
|
class Technique(enum.Enum):
|
||
|
DEAL_NEW = enum.auto()
|
||
|
CUT = enum.auto()
|
||
|
DEAL_INCR = enum.auto()
|
||
|
|
||
|
|
||
|
@dataclasses.dataclass
|
||
|
class Instruction:
|
||
|
tech: Technique
|
||
|
n: int
|
||
|
|
||
|
def to_linear(self) -> tuple[int, int]:
|
||
|
if self.tech == Technique.DEAL_NEW:
|
||
|
return (-1, -1)
|
||
|
if self.tech == Technique.CUT:
|
||
|
return (1, -self.n)
|
||
|
if self.tech == Technique.DEAL_INCR:
|
||
|
return (self.n, 0)
|
||
|
assert False # Sanity check
|
||
|
|
||
|
def apply(self, card_pos: int, deck_size: int) -> int:
|
||
|
a, b = self.to_linear()
|
||
|
return (card_pos * a + b) % deck_size
|
||
|
|
||
|
|
||
|
def solve(input: str) -> int:
|
||
|
def parse_instruction(input: str) -> Instruction:
|
||
|
if input == "deal into new stack":
|
||
|
return Instruction(Technique.DEAL_NEW, 0)
|
||
|
n = int(input.split()[-1])
|
||
|
if input.startswith("cut"):
|
||
|
return Instruction(Technique.CUT, n)
|
||
|
if input.startswith("deal with increment"):
|
||
|
return Instruction(Technique.DEAL_INCR, n)
|
||
|
assert False # Sanity check
|
||
|
|
||
|
def parse(input: list[str]) -> list[Instruction]:
|
||
|
return [parse_instruction(line) for line in input]
|
||
|
|
||
|
def to_linear(instructions: list[Instruction]) -> tuple[int, int]:
|
||
|
a, b = 1, 0
|
||
|
for instr in instructions:
|
||
|
new_a, new_b = instr.to_linear()
|
||
|
a = a * new_a
|
||
|
b = b * new_a + new_b
|
||
|
return a, b
|
||
|
|
||
|
def mod_pow(n: int, pow: int, mod: int) -> int:
|
||
|
if pow == 0:
|
||
|
return 1
|
||
|
if pow == 1:
|
||
|
return n % mod
|
||
|
res = mod_pow(n, pow // 2, mod) ** 2
|
||
|
if pow % 2 == 1:
|
||
|
res *= n
|
||
|
return res % mod
|
||
|
|
||
|
def mod_inverse(n: int, mod: int) -> int:
|
||
|
def extended_gcd(a: int, b: int) -> tuple[int, int, int]:
|
||
|
if b == 0:
|
||
|
return a, 1, 0
|
||
|
gcd, x, y = extended_gcd(b, a % b)
|
||
|
# we want x * a + y * b == gcd
|
||
|
return gcd, y, x - (a // b) * y
|
||
|
|
||
|
gcd, _, y = extended_gcd(mod, n)
|
||
|
assert gcd == 1 # Sanity check
|
||
|
return y % mod
|
||
|
|
||
|
def find_in_pos(
|
||
|
card_pos: int, deck_size: int, repetitions: int, instructions: list[Instruction]
|
||
|
) -> int:
|
||
|
a, b = to_linear(instructions)
|
||
|
repeat_a = mod_pow(a, repetitions, deck_size)
|
||
|
repeat_b = (b * (repeat_a - 1) * mod_inverse(a - 1, deck_size)) % deck_size
|
||
|
|
||
|
return ((card_pos - repeat_b) * mod_inverse(repeat_a, deck_size)) % deck_size
|
||
|
|
||
|
instructions = parse(input.splitlines())
|
||
|
return find_in_pos(2020, 119315717514047, 101741582076661, instructions)
|
||
|
|
||
|
|
||
|
def main() -> None:
|
||
|
input = sys.stdin.read()
|
||
|
print(solve(input))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|