advent-of-code/2019/d22/ex2/ex2.py

97 lines
2.7 KiB
Python
Raw Normal View History

2024-12-27 04:53:16 +01:00
#!/usr/bin/env python
import dataclasses
import enum
import sys
class Technique(enum.Enum):
DEAL_NEW = enum.auto()
CUT = enum.auto()
DEAL_INCR = enum.auto()
@dataclasses.dataclass
class Instruction:
tech: Technique
n: int
def to_linear(self) -> tuple[int, int]:
if self.tech == Technique.DEAL_NEW:
return (-1, -1)
if self.tech == Technique.CUT:
return (1, -self.n)
if self.tech == Technique.DEAL_INCR:
return (self.n, 0)
assert False # Sanity check
def apply(self, card_pos: int, deck_size: int) -> int:
a, b = self.to_linear()
return (card_pos * a + b) % deck_size
def solve(input: str) -> int:
def parse_instruction(input: str) -> Instruction:
if input == "deal into new stack":
return Instruction(Technique.DEAL_NEW, 0)
n = int(input.split()[-1])
if input.startswith("cut"):
return Instruction(Technique.CUT, n)
if input.startswith("deal with increment"):
return Instruction(Technique.DEAL_INCR, n)
assert False # Sanity check
def parse(input: list[str]) -> list[Instruction]:
return [parse_instruction(line) for line in input]
def to_linear(instructions: list[Instruction]) -> tuple[int, int]:
a, b = 1, 0
for instr in instructions:
new_a, new_b = instr.to_linear()
a = a * new_a
b = b * new_a + new_b
return a, b
def mod_pow(n: int, pow: int, mod: int) -> int:
if pow == 0:
return 1
if pow == 1:
return n % mod
res = mod_pow(n, pow // 2, mod) ** 2
if pow % 2 == 1:
res *= n
return res % mod
def mod_inverse(n: int, mod: int) -> int:
def extended_gcd(a: int, b: int) -> tuple[int, int, int]:
if b == 0:
return a, 1, 0
gcd, x, y = extended_gcd(b, a % b)
# we want x * a + y * b == gcd
return gcd, y, x - (a // b) * y
gcd, _, y = extended_gcd(mod, n)
assert gcd == 1 # Sanity check
return y % mod
def find_in_pos(
card_pos: int, deck_size: int, repetitions: int, instructions: list[Instruction]
) -> int:
a, b = to_linear(instructions)
repeat_a = mod_pow(a, repetitions, deck_size)
repeat_b = (b * (repeat_a - 1) * mod_inverse(a - 1, deck_size)) % deck_size
return ((card_pos - repeat_b) * mod_inverse(repeat_a, deck_size)) % deck_size
instructions = parse(input.splitlines())
return find_in_pos(2020, 119315717514047, 101741582076661, instructions)
def main() -> None:
input = sys.stdin.read()
print(solve(input))
if __name__ == "__main__":
main()