advent-of-code/2024/d15/ex2/ex2.py

150 lines
4.5 KiB
Python
Raw Permalink Normal View History

2024-12-15 17:01:06 +01:00
#!/usr/bin/env python
import copy
import enum
import sys
from typing import NamedTuple
class Point(NamedTuple):
x: int
y: int
class Direction(enum.StrEnum):
UP = "^"
RIGHT = ">"
DOWN = "v"
LEFT = "<"
def step(self, p: Point) -> Point:
dx: int
dy: int
match self:
case Direction.UP:
dx, dy = -1, 0
case Direction.RIGHT:
dx, dy = 0, 1
case Direction.DOWN:
dx, dy = 1, 0
case Direction.LEFT:
dx, dy = 0, -1
return Point(p.x + dx, p.y + dy)
class Object(enum.StrEnum):
BOX = "O"
WALL = "#"
# Maze always contains the left part of the object
Maze = dict[Point, Object]
# WideMaze maps left and right side of an object to its (left, right) tuple
WideMaze = dict[Point, tuple[Point, Point]]
def solve(input: str) -> int:
def parse_maze(input: list[str]) -> tuple[Point, Maze]:
robot: Point | None = None
maze: Maze = {}
for x, line in enumerate(input):
for y, c in enumerate(line):
if c == ".":
continue
if c == "@":
robot = Point(x, y * 2)
continue
maze[Point(x, y * 2)] = Object(c)
assert robot is not None # Sanity check
return robot, maze
def parse_directions(input: str) -> list[Direction]:
return [Direction(c) for c in input if c in Direction]
def parse(input: str) -> tuple[Point, Maze, list[Direction]]:
maze_input, directions_input = input.split("\n\n")
robot, maze = parse_maze(maze_input.splitlines())
directions = parse_directions(directions_input)
return robot, maze, directions
def step(robot: Point, maze: Maze, d: Direction) -> tuple[Point, Maze]:
def widen_maze() -> WideMaze:
res: WideMaze = {}
for p in maze.keys():
right_p = Point(p.x, p.y + 1)
res[p] = (p, right_p)
res[right_p] = (p, right_p)
return res
def boxes_along(wide_maze: WideMaze) -> set[Point] | None:
def helper(current: Point) -> set[Point] | None:
# Return empty set if we hit the air
if current not in wide_maze:
return set()
# Query both sides of the object
left, right = wide_maze[current]
# Return None if we hit a wall
if maze[left] == Object.WALL:
return None
assert right not in maze # Sanity check
# Try to move both sides of the box recursively
res_left: set[Point] = set()
res_right: set[Point] = set()
# Only check next_left if not moving right
if (next_left := d.step(left)) != right:
if (try_left := helper(next_left)) is None:
return None
res_left = try_left
# And only check next_right if not moving left
if (next_right := d.step(right)) != left:
if (try_right := helper(next_right)) is None:
return None
res_right = try_right
# Both sides succeeded, return the set of boxes to move
return {left} | res_left | res_right
return helper(d.step(robot))
def move_boxes(boxes: set[Point]) -> Maze:
new_maze = copy.copy(maze)
# Do the move in two steps to avoid overwriting any values during movement
for box in boxes:
new_maze.pop(box)
for box in boxes:
new_maze[d.step(box)] = maze[box]
return new_maze
new_robot = d.step(robot)
# If we hit a wall, abort the step
if maze.get(new_robot) == Object.WALL:
return robot, maze
# If a box hits a wall, abort the step
if (boxes := boxes_along(widen_maze())) is None:
return robot, maze
# Otherwise move everything along the direction
return new_robot, move_boxes(boxes)
def compute_coordinates(maze: Maze) -> int:
return sum(100 * p.x + p.y for p, obj in maze.items() if obj == Object.BOX)
robot, maze, directions = parse(input)
for d in directions:
robot, maze = step(robot, maze, d)
return compute_coordinates(maze)
def main() -> None:
input = sys.stdin.read()
print(solve(input))
if __name__ == "__main__":
main()